編輯:關於android開發
一、 Android分發機制概述:
Android如此受歡迎,就在於其優秀的交互性,這其中,Android優秀的事件分發機制功不可沒。那麼,作為一個優秀的程序員,要想做一個具有良好交互性的應用,必須透徹理解Android的事件分發機制。
要想充分理解android的分發機制,需要先對以下幾個知識點有所了解:
① View和ViewGroup什麼?
② 事件
③ View 事件的分發機制
④ ViewGroup事件的分發機制
下面,就讓我們沿著大致方向,開始事件分發的探究之旅吧……
二、 View和ViewGroup:
Android的UI界面都是由View和ViewGroup及其派生類組合而成的。其中,View是所有UI組件的基類,而ViewGroup是容納這些組件的容器,其本身也是從View派生出來的,也就是說ViewGroup的父類就是View。
通常來說,Button、ImageView、TextView等控件都是繼承父類View來實現的。RelativeLayout、LinearLayout、FrameLayout等布局都是繼承父類ViewGroup來實現的。
三、事件:
當手指觸摸到View或ViewGroup派生的控件後,將會觸發一系列的觸發響應事件,如:
onTouchEvent、onClick、onLongClick等。每個View都有自己處理事件的回調方法,開發人員只需要重寫這些回調方法,就可以實現需要的響應事件。
而事件通常重要的有如下三種:
MotionEvent.ACTION_DOWN 按下View,是所有事件的開始
MotionEvent.ACTION_MOVE 滑動事件
MotionEvent.ACTION_UP 與down對應,表示抬起
事件的響應原理:
在android開發設計模式中,最廣泛應用的就是監聽、回調,進而形成了事件響應的過程。
以Button的OnClick為例,因為Button也是一個View,所以它也擁有View父類的方法,在View中源碼如下:
/**定義接口成員變量*/
protected OnClickListener mOnClickListener;
/**
* Interface definition for a callback to be invoked when a view is clicked.
*/
public interface OnClickListener {
/**
* Called when a view has been clicked.
*
* @param v The view that was clicked.
*/
void onClick(View v);
}
/**
* Register a callback to be invoked when this view is clicked. If this view is not
* clickable, it becomes clickable.
*
* @param l The callback that will run
*
* @see #setClickable(boolean)
*/
public void setOnClickListener(OnClickListener l) {
if (!isClickable()) {
setClickable(true);
}
mOnClickListener = l;
}
/**
* Call this view's OnClickListener, if it is defined.
*
* @return True there was an assigned OnClickListener that was called, false
* otherwise is returned.
*/
public boolean performClick() {
sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_CLICKED);
if (mOnClickListener != null) {
playSoundEffect(SoundEffectConstants.CLICK);
mOnClickListener.onClick(this);
return true;
}
return false;
}
/**觸摸了屏幕後,實現並調用的方法*/
public boolean onTouchEvent(MotionEvent event) {
…..
if (mPerformClick == null) {
mPerformClick = new PerformClick();
}
if (!post(mPerformClick)) {
performClick();
}
…..
}
以上是View源碼中關鍵代碼行,以Button為例,假設需要在一個布局上添加一個按鈕,並實現它的OnClick事件,需要如下步驟:
1、 OnClickListener類是一個當控件被點擊後進行回調的一個接口,它完成被點擊後的回調通知。
2、 創建一個按鈕Button,並設置監聽事件,對這個Button進行setOnClickListener操作
3、 當手指觸摸到Button按鈕,通過一系列方法(之後將會詳細講解,這裡暫時忽略),觸發並執行到onTouchEvent方法並執行mPerformClick方法,在mPerformClick方法中,首先會判斷注 冊的mOnClickListener是否為空,若不為空,它就會回調之前注冊的onClick方法,進而執行用戶自定義代碼。
事件響應機制,簡單來說上面的例子就已經基本上诠釋了
注冊一個監聽對象
實現監聽對象的監聽事件
當某一觸發事件到來,在觸發事件中通過注冊過的監聽對象,回調注冊對象的響應事件,來完成用戶自定義實現。
但凡明白了這一個簡單的事件響應的過程,就離事件驅動開發整個過程就不遠了,大道至簡,請完全理解了這個例子,再繼續之後的學習,事半功倍。
四、 View事件的分發機制:
通過上面的例子,我們初步的接觸了View的事件分發機制,再進一步了解。首先,我們要熟悉dispatchTouchEvent和onTouchEvent兩個函數,這兩個函數都是View的函數,要理解View事件的分發機制,只要清楚這兩個函數就基本上清楚了。
在這裡先提醒一句,這裡的“分發”是指一個觸摸或點擊的事件發生,分發給當前觸摸控件所監聽的事件(如OnClick、onTouch等),進而來決定是控件的哪個函數來響應此次事件。
dispatchTouchEvent:
此函數負責事件的分發,你只需要記住當觸摸一個View控件,首先會調用這個函數就行,在這個函數體裡決定將事件分發給誰來處理。
onTouchEvent:
此函數負責執行事件的處理,負責處理事件,主要處理MotionEvent.ACTION_DOWN、
MotionEvent.ACTION_MOVE 、MotionEvent.ACTION_UP這三個事件。
public boolean onTouchEvent (MotionEvent event)
參數event為手機屏幕觸摸事件封裝類的對象,其中封裝了該事件的所有信息,例如觸摸的位置、觸摸的類型以及觸摸的時間等。該對象會在用戶觸摸手機屏幕時被創建。
那麼它是如何執行這個流程的呢?我們還以布局上的按鈕為例,看看它是如何實現的。(看圖①)
我們知道,View做為所有控件的父類,它本身定義了很多接口來監聽觸摸在View上的事件,如OnClickListener(點擊)、OnLongClickListener(長按)、OnTouchListener(觸摸監聽)等,那麼當手指觸摸到View時候,該響應“點擊”還是”觸摸”呢,就是根據dispatchTouchEvent和onTouchEvent這兩個函數組合實現的,我們之下的討論,僅對常用的“點擊OnClick”和“觸摸onTouch”來討論,順籐摸瓜,找出主線,進而搞清楚View的事件分發機制。
對於上面的按鈕,點擊它一下,我們期望2種結果,第一種:它響應一個點擊事件。第二種:不響應點擊事件。
第一種源碼:
public class MainActivity extends Activity implements OnClickListener ,OnTouchListener{
private Button btnButton;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
btnButton=(Button) findViewById(R.id.btn);
btnButton.setOnClickListener(this);
btnButton.setOnTouchListener(this);
}
@Override
public void onClick(View v) {
// TODO Auto-generated method stub
switch (v.getId()) {
case R.id.btn:
Log.e(View, onClick===========>);
break;
default:
break;
}
}
@Override
public boolean onTouch(View v, MotionEvent event) {
// TODO Auto-generated method stub
Log.e(View, onTouch..................................);
return false;
}
}
第二種源碼:
public class MainActivity extends Activity implements OnClickListener ,OnTouchListener{
private Button btnButton;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
btnButton=(Button) findViewById(R.id.btn);
btnButton.setOnClickListener(this);
btnButton.setOnTouchListener(this);
}
@Override
public void onClick(View v) {
// TODO Auto-generated method stub
switch (v.getId()) {
case R.id.btn:
Log.e(View, onClick===========>);
break;
default:
break;
}
}
@Override
public boolean onTouch(View v, MotionEvent event) {
// TODO Auto-generated method stub
Log.e(View, onTouch..................................);
return true;
}
}
結果分析:
上面兩處代碼,第一種執行了OnClick函數和OnTouch函數,第二種執行了OnTouch函數,並沒有執行OnClick函數,而且對兩處代碼進行比較,發現只有在onTouch處返回值true和false不同。當onTouch返回false,onClick被執行了,返回true,onClick未被執行。
為什麼會這樣呢?我們只有深入源碼才能分析出來。
前面提到,觸摸一個View就會執行dispatchTouchEvent方法去“分發”事件, 既然觸摸的是按鈕Button,那麼我們就查看Button的源碼,尋找dispatchTouchEvent方法,Button源碼中沒有dispatchTouchEvent方法,但知道Button繼承自TextView,尋找TextView,發現它也沒有dispatchTouchEvent方法,繼續查找TextView的父類View,發現View有dispatchTouchEvent方法,那我們就分析dispatchTouchEvent方法。
主要代碼如下:
public boolean dispatchTouchEvent(MotionEvent event) {
if (onFilterTouchEventForSecurity(event)) {
//noinspection SimplifiableIfStatement
if (mOnTouchListener != null && (mViewFlags & ENABLED_MASK) == ENABLED &&
mOnTouchListener.onTouch(this, event)) {
return true;
}
if (onTouchEvent(event)) {
return true;
}
}
return false;
}
分析:
先來看dispatchTouchEvent函數返回值,如果返回true,表明事件被處理了,反之,表明事件未被處理。
public boolean dispatchTouchEvent(MotionEvent event) {
if (onFilterTouchEventForSecurity(event)) {
//noinspection SimplifiableIfStatement
if (mOnTouchListener != null && (mViewFlags & ENABLED_MASK) == ENABLED &&
mOnTouchListener.onTouch(this, event)) {
return true;
}
if (onTouchEvent(event)) {
return true;
}
}
return false;
}
這個判定很重要,mOnTouchListener != null,判斷該控件是否注冊了OnTouchListener對象的監聽,(mViewFlags & ENABLED_MASK) == ENABLED,判斷當前的控件是否能被點擊(比如Button默認可以點擊,ImageView默認不許點擊,看到這裡就了然了),mOnTouchListener.onTouch(this, event)這個是關鍵,這個調用,就是回調你注冊在這個View上的mOnTouchListener對象的onTouch方法,如果你在onTouch方法裡返回false,那麼這個判斷語句就跳出,去執行下面的程序,否則,當前2個都返回了true,自定義onTouch方法也返回true,條件成立,就直接返回了,不再執行下面的程序。接下來,if (onTouchEvent(event)) 這個判斷很重要,能否回調OnClickListener接口的onClick函數,關鍵在於此,可以肯定的是,如果上面if (mOnTouchListener != null && (mViewFlags & ENABLED_MASK) == ENABLED &&
mOnTouchListener.onTouch(this, event))返回true,那麼就不會執行並回調OnClickListener接口的onClick函數。
接下來,我們看onTouchEvent這個函數,看它是如何響應點擊事件的。
主要代碼如下:
public boolean onTouchEvent(MotionEvent event) {
final int viewFlags = mViewFlags;
if ((viewFlags & ENABLED_MASK) == DISABLED) {
if (event.getAction() == MotionEvent.ACTION_UP && (mPrivateFlags & PRESSED) != 0) {
mPrivateFlags &= ~PRESSED;
refreshDrawableState();
}
// A disabled view that is clickable still consumes the touch
// events, it just doesn't respond to them.
return (((viewFlags & CLICKABLE) == CLICKABLE ||
(viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE));
}
if (mTouchDelegate != null) {
if (mTouchDelegate.onTouchEvent(event)) {
return true;
}
}
if (((viewFlags & CLICKABLE) == CLICKABLE ||
(viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE)) {
switch (event.getAction()) {
case MotionEvent.ACTION_UP:
boolean prepressed = (mPrivateFlags & PREPRESSED) != 0;
if ((mPrivateFlags & PRESSED) != 0 || prepressed) {
// take focus if we don't have it already and we should in
// touch mode.
boolean focusTaken = false;
if (isFocusable() && isFocusableInTouchMode() && !isFocused()) {
focusTaken = requestFocus();
}
if (prepressed) {
// The button is being released before we actually
// showed it as pressed. Make it show the pressed
// state now (before scheduling the click) to ensure
// the user sees it.
mPrivateFlags |= PRESSED;
refreshDrawableState();
}
if (!mHasPerformedLongPress) {
// This is a tap, so remove the longpress check
removeLongPressCallback();
// Only perform take click actions if we were in the pressed state
if (!focusTaken) {
// Use a Runnable and post this rather than calling
// performClick directly. This lets other visual state
// of the view update before click actions start.
if (mPerformClick == null) {
mPerformClick = new PerformClick();
}
if (!post(mPerformClick)) {
performClick();
}
}
}
if (mUnsetPressedState == null) {
mUnsetPressedState = new UnsetPressedState();
}
if (prepressed) {
postDelayed(mUnsetPressedState,
ViewConfiguration.getPressedStateDuration());
} else if (!post(mUnsetPressedState)) {
// If the post failed, unpress right now
mUnsetPressedState.run();
}
removeTapCallback();
}
break;
case MotionEvent.ACTION_DOWN:
mHasPerformedLongPress = false;
if (performButtonActionOnTouchDown(event)) {
break;
}
// Walk up the hierarchy to determine if we're inside a scrolling container.
boolean isInScrollingContainer = isInScrollingContainer();
// For views inside a scrolling container, delay the pressed feedback for
// a short period in case this is a scroll.
if (isInScrollingContainer) {
mPrivateFlags |= PREPRESSED;
if (mPendingCheckForTap == null) {
mPendingCheckForTap = new CheckForTap();
}
postDelayed(mPendingCheckForTap, ViewConfiguration.getTapTimeout());
} else {
// Not inside a scrolling container, so show the feedback right away
mPrivateFlags |= PRESSED;
refreshDrawableState();
checkForLongClick(0);
}
break;
case MotionEvent.ACTION_CANCEL:
mPrivateFlags &= ~PRESSED;
refreshDrawableState();
removeTapCallback();
break;
case MotionEvent.ACTION_MOVE:
final int x = (int) event.getX();
final int y = (int) event.getY();
// Be lenient about moving outside of buttons
if (!pointInView(x, y, mTouchSlop)) {
// Outside button
removeTapCallback();
if ((mPrivateFlags & PRESSED) != 0) {
// Remove any future long press/tap checks
removeLongPressCallback();
// Need to switch from pressed to not pressed
mPrivateFlags &= ~PRESSED;
refreshDrawableState();
}
}
break;
}
return true;
}
return false;
}
public boolean performClick() {
sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_CLICKED);
if (mOnClickListener != null) {
playSoundEffect(SoundEffectConstants.CLICK);
mOnClickListener.onClick(this);
return true;
}
return false;
}
代碼量太大了,不過不要緊,我們通過主要代碼分析一下。
public boolean onTouchEvent(MotionEvent event) {
//控件不能被點擊
if ((viewFlags & ENABLED_MASK) == DISABLED) {
…
}
//委托代理別的View去實現
if (mTouchDelegate != null) {
if (mTouchDelegate.onTouchEvent(event)) {
return true;
}
}
//控件能夠點擊或者長按
if (((viewFlags & CLICKABLE) == CLICKABLE ||
(viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE)) {
switch (event.getAction()) {
//抬起事件
case MotionEvent.ACTION_UP:
…...
if (!focusTaken) {
// Use a Runnable and post this rather than calling
// performClick directly. This lets other visual state
// of the view update before click actions start.
if (mPerformClick == null) {
mPerformClick = new PerformClick();
}
if (!post(mPerformClick)) {
//這裡就是去執行回調注冊的onClick函數,實現點擊
performClick();
}
}
……
break;
//按下事件
case MotionEvent.ACTION_DOWN:
……
break;
……
//移動事件
case MotionEvent.ACTION_MOVE:
……
break;
}
return true;
}
return false;
}
從上面主要代碼可以看出onTouchEvent傳參MotionEvent類型,它封裝了觸摸的活動事件,其中就有MotionEvent.ACTION_DOWN、MotionEvent.ACTION_MOVE、MotionEvent.ACTION_UP三個事件。我們在來看看onTouchEvent的返回值,因為onTouchEvent是在dispatchTouchEvent事件分發處理中調用的,
public boolean dispatchTouchEvent(MotionEvent event) {
……
if (onTouchEvent(event)) {
return true;
}
return fasle;
}
如果onTouchEvent返回true,dispatchTouchEvent就返回true,表明事件被處理了,反之,事件未被處理。
程序的關鍵在 if (((viewFlags & CLICKABLE) == CLICKABLE ||
(viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE))的判斷裡,我們發現無論switch的分支在什麼地方跳出,返回都是true。這就表明,無論是三個事件中的哪一個,都會返回true。
參照下圖,結合上述,不難理解View的分發機制了。
四、 ViewGroup事件分發機制:
ViewGroup事件分發機制較View的稍微復雜一些,不過對View的機制只要精確的理解後,仔細看過這一節,睡幾覺起來,估計也就悟出來了,學習就是這麼奇怪,當下理解不了或模糊的地方,只要腦子有印象,忽然一夜好像就懂了。
先來看下面的一個簡單布局,我們將通過例子,了解ViewGroup+View的android事件處理機制。
上圖由:黑色為線性布局LinearLayout,紫色為相對布局RelativeLayout,按鈕Button三部分組成。RelativeLayout為LinearLayout的子布局,Button為RelativeLayout的子布局。以下RelativeLayout簡稱(R),LinearLayout簡稱(L),Button簡稱(B)。<喎?http://www.Bkjia.com/kf/ware/vc/" target="_blank" class="keylink">vcD4NCjxwcmUgY2xhc3M9"brush:java;">
經過前面講解,我們首先知道這樣兩件事情。
1、(R)和(L)的父類是ViewGroup,(B)的父類是View。
2、dispatchTouchEvent這個函數很重要,不論是ViewGroup還是View,都由它來處理事件的消費和傳遞。
下面,我們通過橫向和縱向兩個維度,通過源碼和圖解的方式,充分理解事件的傳遞機制。
先來看整體的事件傳遞過程:
當手指點擊按鈕B時,事件傳遞的順序是從底向上傳遞的,也就是按照L->R->B的順序由下往上逐層傳遞,響應正好相反,是自上而下。
L首先接收到點擊事件,L的父類是ViewGroup類,並將事件傳遞給dispatchTouchEvent方法,dispatchTouchEvent函數中判斷該控件L是否重載了onInterceptTouchEvent方法進行事件攔截,onInterceptTouchEvent默認返回false不攔截,那麼dispatchTouchEvent方法將事件傳遞給R去處理(進入第2流程處理),如果返回true表示當前L控件攔截了事件向其它控件的傳遞,交給它自己父類View的dispatchTouchEvent去處理,在父方法的dispatchTouchEvent中,將會按照前面講的View的事件處理機制去判斷,比如判斷L是否重載了onTouch方法,是否可點擊,是否做了監聽等事件。
R也是ViewGroup的子類,因此與第1流程基本相似,如果onInterceptTouchEvent返回了false,表示事件將不攔截繼續傳遞給B。
B是View的子類,它沒有onInterceptTouchEvent方法,直接交給自己父類View的dispatchTouchEvent去處理,流程同不再敷述。
總結:
onInterceptTouchEvent只有ViewGroup才有,當一個控件是繼承自ViewGroup而來的,那麼它就可能會有子控件,因此,才有可能傳遞給子控件,而繼承自View的控件,不會有子控件,也就沒有onInterceptTouchEvent函數了。
通過dispatchTouchEvent分發的控件返回值True和false,表示當前控件是否消費了傳遞過來的事件,如果消費了,返回True,反之false。消費了,就不再繼續傳遞了,沒有消費,如果有子控件將繼續傳遞。
啰嗦點,如果想再深層次了解一下,再次從源碼ViewGroup來分析一個L控件的事件傳遞過程,請看下圖:
結合上面的圖例,下面列出ViewGroup源碼來分析一下,我們只需要分析ViewGroup的dispatchTouchEvent、onInterceptTouchEvent、dispatchTransformedTouchEvent三個方法即可。
public boolean dispatchTouchEvent(MotionEvent ev) {
if (mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onTouchEvent(ev, 1);
}
boolean handled = false;
if (onFilterTouchEventForSecurity(ev)) {
final int action = ev.getAction();
final int actionMasked = action & MotionEvent.ACTION_MASK;
// Handle an initial down.
if (actionMasked == MotionEvent.ACTION_DOWN) {
// Throw away all previous state when starting a new touch gesture.
// The framework may have dropped the up or cancel event for the previous gesture
// due to an app switch, ANR, or some other state change.
cancelAndClearTouchTargets(ev);
resetTouchState();
}
// Check for interception.
final boolean intercepted;
if (actionMasked == MotionEvent.ACTION_DOWN
|| mFirstTouchTarget != null) {
final boolean disallowIntercept = (mGroupFlags & FLAG_DISALLOW_INTERCEPT) != 0;
if (!disallowIntercept) {
intercepted = onInterceptTouchEvent(ev);
ev.setAction(action); // restore action in case it was changed
} else {
intercepted = false;
}
} else {
// There are no touch targets and this action is not an initial down
// so this view group continues to intercept touches.
intercepted = true;
}
// Check for cancelation.
final boolean canceled = resetCancelNextUpFlag(this)
|| actionMasked == MotionEvent.ACTION_CANCEL;
// Update list of touch targets for pointer down, if needed.
final boolean split = (mGroupFlags & FLAG_SPLIT_MOTION_EVENTS) != 0;
TouchTarget newTouchTarget = null;
boolean alreadyDispatchedToNewTouchTarget = false;
if (!canceled && !intercepted) {
if (actionMasked == MotionEvent.ACTION_DOWN
|| (split && actionMasked == MotionEvent.ACTION_POINTER_DOWN)
|| actionMasked == MotionEvent.ACTION_HOVER_MOVE) {
final int actionIndex = ev.getActionIndex(); // always 0 for down
final int idBitsToAssign = split ? 1 << ev.getPointerId(actionIndex)
: TouchTarget.ALL_POINTER_IDS;
// Clean up earlier touch targets for this pointer id in case they
// have become out of sync.
removePointersFromTouchTargets(idBitsToAssign);
final int childrenCount = mChildrenCount;
if (childrenCount != 0) {
// Find a child that can receive the event.
// Scan children from front to back.
final View[] children = mChildren;
final float x = ev.getX(actionIndex);
final float y = ev.getY(actionIndex);
for (int i = childrenCount - 1; i >= 0; i--) {
final View child = children[i];
if (!canViewReceivePointerEvents(child)
|| !isTransformedTouchPointInView(x, y, child, null)) {
continue;
}
newTouchTarget = getTouchTarget(child);
if (newTouchTarget != null) {
// Child is already receiving touch within its bounds.
// Give it the new pointer in addition to the ones it is handling.
newTouchTarget.pointerIdBits |= idBitsToAssign;
break;
}
resetCancelNextUpFlag(child);
if (dispatchTransformedTouchEvent(ev, false, child, idBitsToAssign)) {
// Child wants to receive touch within its bounds.
mLastTouchDownTime = ev.getDownTime();
mLastTouchDownIndex = i;
mLastTouchDownX = ev.getX();
mLastTouchDownY = ev.getY();
newTouchTarget = addTouchTarget(child, idBitsToAssign);
alreadyDispatchedToNewTouchTarget = true;
break;
}
}
}
if (newTouchTarget == null && mFirstTouchTarget != null) {
// Did not find a child to receive the event.
// Assign the pointer to the least recently added target.
newTouchTarget = mFirstTouchTarget;
while (newTouchTarget.next != null) {
newTouchTarget = newTouchTarget.next;
}
newTouchTarget.pointerIdBits |= idBitsToAssign;
}
}
}
// Dispatch to touch targets.
if (mFirstTouchTarget == null) {
// No touch targets so treat this as an ordinary view.
handled = dispatchTransformedTouchEvent(ev, canceled, null,
TouchTarget.ALL_POINTER_IDS);
} else {
// Dispatch to touch targets, excluding the new touch target if we already
// dispatched to it. Cancel touch targets if necessary.
TouchTarget predecessor = null;
TouchTarget target = mFirstTouchTarget;
while (target != null) {
final TouchTarget next = target.next;
if (alreadyDispatchedToNewTouchTarget && target == newTouchTarget) {
handled = true;
} else {
final boolean cancelChild = resetCancelNextUpFlag(target.child)
|| intercepted;
if (dispatchTransformedTouchEvent(ev, cancelChild,
target.child, target.pointerIdBits)) {
handled = true;
}
if (cancelChild) {
if (predecessor == null) {
mFirstTouchTarget = next;
} else {
predecessor.next = next;
}
target.recycle();
target = next;
continue;
}
}
predecessor = target;
target = next;
}
}
// Update list of touch targets for pointer up or cancel, if needed.
if (canceled
|| actionMasked == MotionEvent.ACTION_UP
|| actionMasked == MotionEvent.ACTION_HOVER_MOVE) {
resetTouchState();
} else if (split && actionMasked == MotionEvent.ACTION_POINTER_UP) {
final int actionIndex = ev.getActionIndex();
final int idBitsToRemove = 1 << ev.getPointerId(actionIndex);
removePointersFromTouchTargets(idBitsToRemove);
}
}
if (!handled && mInputEventConsistencyVerifier != null) {
mInputEventConsistencyVerifier.onUnhandledEvent(ev, 1);
}
return handled;
}
public boolean onInterceptTouchEvent(MotionEvent ev) {
return false;
}
private boolean dispatchTransformedTouchEvent(MotionEvent event, boolean cancel,
View child, int desiredPointerIdBits) {
final boolean handled;
// Canceling motions is a special case. We don't need to perform any transformations
// or filtering. The important part is the action, not the contents.
final int oldAction = event.getAction();
if (cancel || oldAction == MotionEvent.ACTION_CANCEL) {
event.setAction(MotionEvent.ACTION_CANCEL);
if (child == null) {
handled = super.dispatchTouchEvent(event);
} else {
handled = child.dispatchTouchEvent(event);
}
event.setAction(oldAction);
return handled;
}
// Calculate the number of pointers to deliver.
final int oldPointerIdBits = event.getPointerIdBits();
final int newPointerIdBits = oldPointerIdBits & desiredPointerIdBits;
// If for some reason we ended up in an inconsistent state where it looks like we
// might produce a motion event with no pointers in it, then drop the event.
if (newPointerIdBits == 0) {
return false;
}
// If the number of pointers is the same and we don't need to perform any fancy
// irreversible transformations, then we can reuse the motion event for this
// dispatch as long as we are careful to revert any changes we make.
// Otherwise we need to make a copy.
final MotionEvent transformedEvent;
if (newPointerIdBits == oldPointerIdBits) {
if (child == null || child.hasIdentityMatrix()) {
if (child == null) {
handled = super.dispatchTouchEvent(event);
} else {
final float offsetX = mScrollX - child.mLeft;
final float offsetY = mScrollY - child.mTop;
event.offsetLocation(offsetX, offsetY);
handled = child.dispatchTouchEvent(event);
event.offsetLocation(-offsetX, -offsetY);
}
return handled;
}
transformedEvent = MotionEvent.obtain(event);
} else {
transformedEvent = event.split(newPointerIdBits);
}
// Perform any necessary transformations and dispatch.
if (child == null) {
handled = super.dispatchTouchEvent(transformedEvent);
} else {
final float offsetX = mScrollX - child.mLeft;
final float offsetY = mScrollY - child.mTop;
transformedEvent.offsetLocation(offsetX, offsetY);
if (! child.hasIdentityMatrix()) {
transformedEvent.transform(child.getInverseMatrix());
}
handled = child.dispatchTouchEvent(transformedEvent);
}
// Done.
transformedEvent.recycle();
return handled;
}
代碼量比較大,我們先概述一下各個函數的主要作用。
dispatchTouchEvent主要用來分發事件,函數主要作用是來決定當前的事件是交由自己消費處理,還是交由子控件處理。
onInterceptTouchEvent主要來決定當前控件是否需要攔截傳遞給子控件,如果返回True表示該控件攔截,並交由自己父類的dispatchTouchEvent處理消費,如果返回false表示不攔截,允許傳遞給子控件處理。
dispatchTransformedTouchEvent主要根據傳來的子控件,決定是自身處理消費,還是交由子控件處理消費。
我們主要來分析一下dispatchTouchEvent函數:
if (actionMasked == MotionEvent.ACTION_DOWN
|| mFirstTouchTarget != null) {
final boolean disallowIntercept = (mGroupFlags & FLAG_DISALLOW_INTERCEPT) != 0;
if (!disallowIntercept) {
intercepted = onInterceptTouchEvent(ev);
ev.setAction(action); // restore action in case it was changed
} else {
intercepted = false;
}
} else {
// There are no touch targets and this action is not an initial down
// so this view group continues to intercept touches.
intercepted = true;
}
這段代碼,如果當前傳遞的事件是Down(按下)或者當前觸摸鏈表不為空,那麼它調用onInterceptTouchEvent函數,判斷是否進行事件攔截處理,通過返回值來決定intercepted變量的值。
接下來if (!canceled && !intercepted){} 這個括號內的代碼需要注意了,只有當intercepted返回值為false的時候,才滿足這個條件進入代碼段。因此,我們結合onInterceptTouchEvent源碼,發現它默認值返回的是false,也就說如果你不重載onInterceptTouchEvent方法並令其返回True,它一定是返回false,並能夠執行花括號內的代碼。
我們分析一下花括號中的代碼,if (actionMasked == MotionEvent.ACTION_DOWN
|| (split && actionMasked == MotionEvent.ACTION_POINTER_DOWN)
|| actionMasked == MotionEvent.ACTION_HOVER_MOVE) {}判斷當前的事件是否是ACTION_DOWN、ACTION_POINTER_DOWN(多點觸摸)、ACTION_HOVER_MOVE(懸停),如果是,執行花括號內代碼,
final int childrenCount = mChildrenCount;
if (childrenCount != 0) {}判斷當前控件是否有子控件,如果大於0,執行花括號內代碼,
for (int i = childrenCount - 1; i >= 0; i–)遍歷子控件,
if (!canViewReceivePointerEvents(child)
判斷當前的down、POINTER_DOWN、HOVER_MOVE三個事件的坐標點是否落在了子控件上,如果落在子控件上,
if (dispatchTransformedTouchEvent(ev, false, child, idBitsToAssign))
通過dispatchTransformedTouchEvent傳遞事件,交由子控件判斷是否傳遞或自己消費處理。如果dispatchTransformedTouchEvent返回true,表示子控件已消費處理,並添加此子控件View到觸摸鏈表,並放置鏈表頭,並結束遍歷子控件。newTouchTarget = addTouchTarget(child, idBitsToAssign);false表示未處理。
接著分析
if (mFirstTouchTarget == null) {
handled = dispatchTransformedTouchEvent(ev, canceled, null,
TouchTarget.ALL_POINTER_IDS);
} else {
……
}
mFirstTouchTarget什麼時候為空呢?從前面的代碼可以看到,如果onInterceptTouchEvent返回為false(也就是不攔截),mFirstTouchTarget就為空,直接交給自己父View執行dispatchTouchEvent去了。如果mFirstTouchTarget不為空,它就取出觸摸鏈表,逐個遍歷判斷處理,如果前面比如Down事件處理過了,就不再處理了。
Android應用坐標系統全面詳解 1 背景 去年有很多人私信告訴我讓說說自定義控件,其實通觀網絡上的很多博客都在講各種自定義控件,但是大多數都是授之以魚,卻很少有較為
Android安全開發之淺談密鑰硬編碼,android淺談密鑰Android安全開發之淺談密鑰硬編碼 作者:伊樵、呆狐@阿裡聚安全 1 簡介 在阿裡聚安全的
Android傳感器應用——重力傳感器實現滾動的彈球,android傳感器一、 問題描述 Android中有多達11種傳感器,不同的手機設備支持的傳感器類型也不盡相同
Android 熱補丁動態修復框架小結 一、概述 最新github上開源了很多熱補丁動態修復框架,大致有: 上述三個框架呢,根據其描述,原理都來自
Android studio使用gradle動態構建APP(不同的包,不