Android教程網
  1. 首頁
  2. Android 技術
  3. Android 手機
  4. Android 系統教程
  5. Android 游戲
 Android教程網 >> Android技術 >> 關於Android編程 >> Android系統進程間通信(IPC)機制Binder中的Client獲得Server遠程接口過程源代碼分析

Android系統進程間通信(IPC)機制Binder中的Client獲得Server遠程接口過程源代碼分析

編輯:關於Android編程

     在上一篇文章中,我們分析了Android系統進程間通信機制Binder中的Server在啟動過程使用Service Manager的addService接口把自己添加到Service Manager守護過程中接受管理。在這一篇文章中,我們將深入到Binder驅動程序源代碼去分析Client是如何通過Service Manager的getService接口中來獲得Server遠程接口的。Client只有獲得了Server的遠程接口之後,才能進一步調用Server提供的服務。

        這裡,我們仍然是通過Android系統中自帶的多媒體播放器為例子來說明Client是如何通過IServiceManager::getService接口來獲得MediaPlayerService這個Server的遠程接口的。假設計讀者已經閱讀過前面三篇文章淺談Service Manager成為Android進程間通信(IPC)機制Binder守護進程之路、淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路和Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析,即假設Service Manager和MediaPlayerService已經啟動完畢,Service Manager現在等待Client的請求。

        這裡,我們要舉例子說明的Client便是MediaPlayer了,它聲明和實現在frameworks/base/include/media/mediaplayer.h和frameworks/base/media/libmedia/mediaplayer.cpp文件中。MediaPlayer繼承於IMediaDeathNotifier類,這個類聲明和實現在frameworks/base/include/media/IMediaDeathNotifier.h和frameworks/base/media/libmedia//IMediaDeathNotifier.cpp文件中,裡面有一個靜態成員函數getMeidaPlayerService,它通過IServiceManager::getService接口來獲得MediaPlayerService的遠程接口。

        在介紹IMediaDeathNotifier::getMeidaPlayerService函數之前,我們先了解一下這個函數的目標。看來前面淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路這篇文章的讀者知道,我們在獲取Service Manager遠程接口時,最終是獲得了一個BpServiceManager對象的IServiceManager接口。類似地,我們要獲得MediaPlayerService的遠程接口,實際上就是要獲得一個稱為BpMediaPlayerService對象的IMediaPlayerService接口。現在,我們就先來看一下BpMediaPlayerService的類圖:

        從這個類圖可以看到,BpMediaPlayerService繼承於BpInterface<IMediaPlayerService>類,即BpMediaPlayerService繼承了IMediaPlayerService類和BpRefBase類,這兩個類又分別繼續了RefBase類。BpRefBase類有一個成員變量mRemote,它的類型為IBinder,實際是一個BpBinder對象。BpBinder類使用了IPCThreadState類來與Binder驅動程序進行交互,而IPCThreadState類有一個成員變量mProcess,它的類型為ProcessState,IPCThreadState類借助ProcessState類來打開Binder設備文件/dev/binder,因此,它可以和Binder驅動程序進行交互。

       BpMediaPlayerService的構造函數有一個參數impl,它的類型為const sp<IBinder>&,從上面的描述中,這個實際上就是一個BpBinder對象。這樣,要創建一個BpMediaPlayerService對象,首先就要有一個BpBinder對象。再來看BpBinder類的構造函數,它有一個參數handle,類型為int32_t,這個參數的意義就是請求MediaPlayerService這個遠程接口的進程對MediaPlayerService這個Binder實體的引用了。因此,獲取MediaPlayerService這個遠程接口的本質問題就變為從Service Manager中獲得MediaPlayerService的一個句柄了。

       現在,我們就來看一下IMediaDeathNotifier::getMeidaPlayerService的實現:

// establish binder interface to MediaPlayerService 
/*static*/const sp<IMediaPlayerService>& 
IMediaDeathNotifier::getMediaPlayerService() 
{ 
 LOGV("getMediaPlayerService"); 
 Mutex::Autolock _l(sServiceLock); 
 if (sMediaPlayerService.get() == 0) { 
  sp<IServiceManager> sm = defaultServiceManager(); 
  sp<IBinder> binder; 
  do { 
   binder = sm->getService(String16("media.player")); 
   if (binder != 0) { 
    break; 
    } 
    LOGW("Media player service not published, waiting..."); 
    usleep(500000); // 0.5 s 
  } while(true); 
 
  if (sDeathNotifier == NULL) { 
  sDeathNotifier = new DeathNotifier(); 
 } 
 binder->linkToDeath(sDeathNotifier); 
 sMediaPlayerService = interface_cast<IMediaPlayerService>(binder); 
 } 
 LOGE_IF(sMediaPlayerService == 0, "no media player service!?"); 
 return sMediaPlayerService; 
} 

        函數首先通過defaultServiceManager函數來獲得Service Manager的遠程接口,實際上就是獲得BpServiceManager的IServiceManager接口,具體可以參考淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路一文。總的來說,這裡的語句:

                     sp<IServiceManager> sm = defaultServiceManager();  

        相當於是:

                     sp<IServiceManager> sm = new BpServiceManager(new BpBinder(0));   

        這裡的0表示Service Manager的遠程接口的句柄值是0。

        接下去的while循環是通過sm->getService接口來不斷嘗試獲得名稱為“media.player”的Service,即MediaPlayerService。為什麼要通過這無窮循環來得MediaPlayerService呢?因為這時候MediaPlayerService可能還沒有啟動起來,所以這裡如果發現取回來的binder接口為NULL,就睡眠0.5秒,然後再嘗試獲取,這是獲取Service接口的標准做法。

        我們來看一下BpServiceManager::getService的實現:

class BpServiceManager : public BpInterface<IServiceManager> 
{ 
 ...... 
 
 virtual sp<IBinder> getService(const String16& name) const 
 { 
  unsigned n; 
  for (n = 0; n < 5; n++){ 
   sp<IBinder> svc = checkService(name); 
   if (svc != NULL) return svc; 
   LOGI("Waiting for service %s...\n", String8(name).string()); 
   sleep(1); 
  } 
  return NULL; 
 } 
 
 virtual sp<IBinder> checkService( const String16& name) const 
 { 
  Parcel data, reply; 
  data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); 
  data.writeString16(name); 
  remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply); 
  return reply.readStrongBinder(); 
 } 
 
 ...... 
}; 

         BpServiceManager::getService通過BpServiceManager::checkService執行操作。

         在BpServiceManager::checkService中,首先是通過Parcel::writeInterfaceToken往data寫入一個RPC頭,這個我們在Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析一文已經介紹過了,就是寫往data裡面寫入了一個整數和一個字符串“android.os.IServiceManager”, Service Manager來處理CHECK_SERVICE_TRANSACTION請求之前,會先驗證一下這個RPC頭,看看是否正確。接著再往data寫入一個字符串name,這裡就是“media.player”了。回憶一下Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析這篇文章,那裡已經往Service Manager中注冊了一個名字為“media.player”的MediaPlayerService。

        這裡的remote()返回的是一個BpBinder,具體可以參考淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路一文,於是,就進行到BpBinder::transact函數了:

status_t BpBinder::transact( 
 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) 
{ 
 // Once a binder has died, it will never come back to life. 
 if (mAlive) { 
  status_t status = IPCThreadState::self()->transact( 
   mHandle, code, data, reply, flags); 
  if (status == DEAD_OBJECT) mAlive = 0; 
  return status; 
 } 
 
 return DEAD_OBJECT; 
} 

        這裡的mHandle = 0,code = CHECK_SERVICE_TRANSACTION,flags = 0。

        這裡再進入到IPCThread::transact函數中:

status_t IPCThreadState::transact(int32_t handle, 
         uint32_t code, const Parcel& data, 
         Parcel* reply, uint32_t flags) 
{ 
 status_t err = data.errorCheck(); 
 
 flags |= TF_ACCEPT_FDS; 
 
 IF_LOG_TRANSACTIONS() { 
  TextOutput::Bundle _b(alog); 
  alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " 
   << handle << " / code " << TypeCode(code) << ": " 
   << indent << data << dedent << endl; 
 } 
  
 if (err == NO_ERROR) { 
  LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(), 
   (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); 
  err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL); 
 } 
  
 if (err != NO_ERROR) { 
  if (reply) reply->setError(err); 
  return (mLastError = err); 
 } 
  
 if ((flags & TF_ONE_WAY) == 0) { 
  #if 0 
  if (code == 4) { // relayout 
   LOGI(">>>>>> CALLING transaction 4"); 
  } else { 
   LOGI(">>>>>> CALLING transaction %d", code); 
  } 
  #endif 
  if (reply) { 
   err = waitForResponse(reply); 
  } else { 
   Parcel fakeReply; 
   err = waitForResponse(&fakeReply); 
  } 
  #if 0 
  if (code == 4) { // relayout 
   LOGI("<<<<<< RETURNING transaction 4"); 
  } else { 
   LOGI("<<<<<< RETURNING transaction %d", code); 
  } 
  #endif 
   
  IF_LOG_TRANSACTIONS() { 
   TextOutput::Bundle _b(alog); 
   alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " 
    << handle << ": "; 
   if (reply) alog << indent << *reply << dedent << endl; 
   else alog << "(none requested)" << endl; 
  } 
 } else { 
  err = waitForResponse(NULL, NULL); 
 } 
  
 return err; 
} 

         首先是調用函數writeTransactionData寫入將要傳輸的數據到IPCThreadState的成員變量mOut中去:

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, 
 int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) 
{ 
 binder_transaction_data tr; 
 
 tr.target.handle = handle; 
 tr.code = code; 
 tr.flags = binderFlags; 
  
 const status_t err = data.errorCheck(); 
 if (err == NO_ERROR) { 
  tr.data_size = data.ipcDataSize(); 
  tr.data.ptr.buffer = data.ipcData(); 
  tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); 
  tr.data.ptr.offsets = data.ipcObjects(); 
 } else if (statusBuffer) { 
  tr.flags |= TF_STATUS_CODE; 
  *statusBuffer = err; 
  tr.data_size = sizeof(status_t); 
  tr.data.ptr.buffer = statusBuffer; 
  tr.offsets_size = 0; 
  tr.data.ptr.offsets = NULL; 
 } else { 
  return (mLastError = err); 
 } 
  
 mOut.writeInt32(cmd); 
 mOut.write(&tr, sizeof(tr)); 
  
 return NO_ERROR; 
} 

        結構體binder_transaction_data在上一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析已經介紹過,這裡不再累述,這個結構體是用來描述要傳輸的參數的內容的。這裡著重描述一下將要傳輸的參數tr裡面的內容,handle = 0,code =  CHECK_SERVICE_TRANSACTION,cmd = BC_TRANSACTION,data裡面的數據分別為:

writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); 
writeString16("android.os.IServiceManager"); 
writeString16("media.player"); 

       這是在BpServiceManager::checkService函數裡面寫進去的,其中前兩個是RPC頭,Service Manager在收到這個請求時會驗證這兩個參數是否正確,這點前面也提到了。IPCThread->getStrictModePolicy默認返回0,STRICT_MODE_PENALTY_GATHER定義為:

// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER 
#define STRICT_MODE_PENALTY_GATHER 0x100  

       我們不關心這個參數的含義,這不會影響我們分析下面的源代碼,有興趣的讀者可以研究一下。這裡要注意的是,要傳輸的參數不包含有Binder對象,因此tr.offsets_size = 0。要傳輸的參數最後寫入到IPCThreadState的成員變量mOut中,包括cmd和tr兩個數據。

       回到IPCThread::transact函數中,由於(flags & TF_ONE_WAY) == 0為true,即這是一個同步請求,並且reply  != NULL,

最終調用:

                       err = waitForResponse(reply);  

       進入到waitForResponse函數中:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) 
{ 
 int32_t cmd; 
 int32_t err; 
 
 while (1) { 
  if ((err=talkWithDriver()) < NO_ERROR) break; 
  err = mIn.errorCheck(); 
  if (err < NO_ERROR) break; 
  if (mIn.dataAvail() == 0) continue; 
   
  cmd = mIn.readInt32(); 
   
  IF_LOG_COMMANDS() { 
   alog << "Processing waitForResponse Command: " 
    << getReturnString(cmd) << endl; 
  } 
 
  switch (cmd) { 
  case BR_TRANSACTION_COMPLETE: 
   if (!reply && !acquireResult) goto finish; 
   break; 
   
  case BR_DEAD_REPLY: 
   err = DEAD_OBJECT; 
   goto finish; 
 
  case BR_FAILED_REPLY: 
   err = FAILED_TRANSACTION; 
   goto finish; 
   
  case BR_ACQUIRE_RESULT: 
   { 
    LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT"); 
    const int32_t result = mIn.readInt32(); 
    if (!acquireResult) continue; 
    *acquireResult = result ? NO_ERROR : INVALID_OPERATION; 
   } 
   goto finish; 
   
  case BR_REPLY: 
   { 
    binder_transaction_data tr; 
    err = mIn.read(&tr, sizeof(tr)); 
    LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); 
    if (err != NO_ERROR) goto finish; 
 
    if (reply) { 
     if ((tr.flags & TF_STATUS_CODE) == 0) { 
      reply->ipcSetDataReference( 
       reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), 
       tr.data_size, 
       reinterpret_cast<const size_t*>(tr.data.ptr.offsets), 
       tr.offsets_size/sizeof(size_t), 
       freeBuffer, this); 
     } else { 
      err = *static_cast<const status_t*>(tr.data.ptr.buffer); 
      freeBuffer(NULL, 
       reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), 
       tr.data_size, 
       reinterpret_cast<const size_t*>(tr.data.ptr.offsets), 
       tr.offsets_size/sizeof(size_t), this); 
     } 
    } else { 
     freeBuffer(NULL, 
      reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), 
      tr.data_size, 
      reinterpret_cast<const size_t*>(tr.data.ptr.offsets), 
      tr.offsets_size/sizeof(size_t), this); 
     continue; 
    } 
   } 
   goto finish; 
 
  default: 
   err = executeCommand(cmd); 
   if (err != NO_ERROR) goto finish; 
   break; 
  } 
 } 
 
finish: 
 if (err != NO_ERROR) { 
  if (acquireResult) *acquireResult = err; 
  if (reply) reply->setError(err); 
  mLastError = err; 
 } 
  
 return err; 
} 

        這個函數通過IPCThreadState::talkWithDriver與驅動程序進行交互:

status_t IPCThreadState::talkWithDriver(bool doReceive) 
{ 
 LOG_ASSERT(mProcess->mDriverFD >= 0, "Binder driver is not opened"); 
 
 binder_write_read bwr; 
 
 // Is the read buffer empty? 
 const bool needRead = mIn.dataPosition() >= mIn.dataSize(); 
 
 // We don't want to write anything if we are still reading 
 // from data left in the input buffer and the caller 
 // has requested to read the next data. 
 const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; 
 
 bwr.write_size = outAvail; 
 bwr.write_buffer = (long unsigned int)mOut.data(); 
 
 // This is what we'll read. 
 if (doReceive && needRead) { 
  bwr.read_size = mIn.dataCapacity(); 
  bwr.read_buffer = (long unsigned int)mIn.data(); 
 } else { 
  bwr.read_size = 0; 
 } 
 
 ...... 
 
 // Return immediately if there is nothing to do. 
 if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; 
 
 bwr.write_consumed = 0; 
 bwr.read_consumed = 0; 
 status_t err; 
 do { 
  ...... 
#if defined(HAVE_ANDROID_OS) 
  if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) 
   err = NO_ERROR; 
  else 
   err = -errno; 
#else 
  err = INVALID_OPERATION; 
#endif 
  ...... 
 } while (err == -EINTR); 
 
 ...... 
 
 if (err >= NO_ERROR) { 
  if (bwr.write_consumed > 0) { 
   if (bwr.write_consumed < (ssize_t)mOut.dataSize()) 
    mOut.remove(0, bwr.write_consumed); 
   else 
    mOut.setDataSize(0); 
  } 
  if (bwr.read_consumed > 0) { 
   mIn.setDataSize(bwr.read_consumed); 
   mIn.setDataPosition(0); 
  } 
 
  ...... 
 
  return NO_ERROR; 
 } 
 
 return err; 
} 

        這裡的needRead為true,因此,bwr.read_size大於0;outAvail也大於0,因此,bwr.write_size也大於0。函數最後通過:

            ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)  

        進入到Binder驅動程序的binder_ioctl函數中。注意,這裡的mProcess->mDriverFD是在我們前面調用defaultServiceManager函數獲得Service Manager遠程接口時,打開的設備文件/dev/binder的文件描述符,mProcess是IPCSThreadState的成員變量。

        Binder驅動程序的binder_ioctl函數中,我們只關注BINDER_WRITE_READ命令相關的邏輯:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 
{ 
 int ret; 
 struct binder_proc *proc = filp->private_data; 
 struct binder_thread *thread; 
 unsigned int size = _IOC_SIZE(cmd); 
 void __user *ubuf = (void __user *)arg; 
 
 /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ 
 
 ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); 
 if (ret) 
  return ret; 
 
 mutex_lock(&binder_lock); 
 thread = binder_get_thread(proc); 
 if (thread == NULL) { 
  ret = -ENOMEM; 
  goto err; 
 } 
 
 switch (cmd) { 
 case BINDER_WRITE_READ: { 
  struct binder_write_read bwr; 
  if (size != sizeof(struct binder_write_read)) { 
   ret = -EINVAL; 
   goto err; 
  } 
  if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { 
   ret = -EFAULT; 
   goto err; 
  } 
  if (binder_debug_mask & BINDER_DEBUG_READ_WRITE) 
   printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx\n", 
   proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer); 
  if (bwr.write_size > 0) { 
   ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed); 
   if (ret < 0) { 
    bwr.read_consumed = 0; 
    if (copy_to_user(ubuf, &bwr, sizeof(bwr))) 
     ret = -EFAULT; 
    goto err; 
   } 
  } 
  if (bwr.read_size > 0) { 
   ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK); 
   if (!list_empty(&proc->todo)) 
    wake_up_interruptible(&proc->wait); 
   if (ret < 0) { 
    if (copy_to_user(ubuf, &bwr, sizeof(bwr))) 
     ret = -EFAULT; 
    goto err; 
   } 
  } 
  if (binder_debug_mask & BINDER_DEBUG_READ_WRITE) 
   printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld\n", 
   proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size); 
  if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { 
   ret = -EFAULT; 
   goto err; 
  } 
  break; 
       } 
 ...... 
 default: 
  ret = -EINVAL; 
  goto err; 
 } 
 ret = 0; 
err: 
 ...... 
 return ret; 
} 

        這裡的filp->private_data的值是在defaultServiceManager函數創建ProcessState對象時,在ProcessState構造函數通過open文件操作函數打開設備文件/dev/binder時設置好的,它表示的是調用open函數打開設備文件/dev/binder的進程上下文信息,這裡將它取出來保存在proc本地變量中。

        這裡的thread本地變量表示當前線程上下文信息,通過binder_get_thread函數獲得。在前面執行ProcessState構造函數時,也會通過ioctl文件操作函數進入到這個函數,那是第一次進入到binder_ioctl這裡,因此,調用binder_get_thread時,表示當前進程上下文信息的proc變量還沒有關於當前線程的上下文信息,因此,會為proc創建一個表示當前線程上下文信息的thread,會保存在proc->threads表示的紅黑樹結構中。這裡調用binder_get_thread就可以直接從proc找到並返回了。

        進入到BINDER_WRITE_READ相關的邏輯。先看看BINDER_WRITE_READ的定義:

                  #define BINDER_WRITE_READ           _IOWR('b', 1, struct binder_write_read)  

        這裡可以看出,BINDER_WRITE_READ命令的參數類型為struct binder_write_read:

struct binder_write_read { 
 signed long write_size; /* bytes to write */ 
 signed long write_consumed; /* bytes consumed by driver */ 
 unsigned long write_buffer; 
 signed long read_size; /* bytes to read */ 
 signed long read_consumed; /* bytes consumed by driver */ 
 unsigned long read_buffer; 
}; 

        這個結構體的含義可以參考淺談Service Manager成為Android進程間通信(IPC)機制Binder守護進程之路一文。這裡首先是通過copy_from_user函數把用戶傳進來的參數的內容拷貝到本地變量bwr中。

        從上面的調用過程,我們知道,這裡bwr.write_size是大於0的,因此進入到binder_thread_write函數中,我們只關注BC_TRANSACTION相關的邏輯:

int 
binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed) 
{ 
 uint32_t cmd; 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 while (ptr < end && thread->return_error == BR_OK) { 
  if (get_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { 
   binder_stats.bc[_IOC_NR(cmd)]++; 
   proc->stats.bc[_IOC_NR(cmd)]++; 
   thread->stats.bc[_IOC_NR(cmd)]++; 
  } 
  switch (cmd) { 
  ...... 
  case BC_TRANSACTION: 
  case BC_REPLY: { 
   struct binder_transaction_data tr; 
 
   if (copy_from_user(&tr, ptr, sizeof(tr))) 
    return -EFAULT; 
   ptr += sizeof(tr); 
   binder_transaction(proc, thread, &tr, cmd == BC_REPLY); 
   break; 
      } 
  ...... 
  default: 
   printk(KERN_ERR "binder: %d:%d unknown command %d\n", proc->pid, thread->pid, cmd); 
   return -EINVAL; 
  } 
  *consumed = ptr - buffer; 
 } 
 return 0; 
} 

        這裡再次把用戶傳出來的參數拷貝到本地變量tr中,tr的類型為struct binder_transaction_data,這個就是前面我們在IPCThreadState::writeTransactionData寫入的內容了。

        接著進入到binder_transaction函數中,不相關的代碼我們忽略掉:

static void 
binder_transaction(struct binder_proc *proc, struct binder_thread *thread, 
struct binder_transaction_data *tr, int reply) 
{ 
 struct binder_transaction *t; 
 struct binder_work *tcomplete; 
 size_t *offp, *off_end; 
 struct binder_proc *target_proc; 
 struct binder_thread *target_thread = NULL; 
 struct binder_node *target_node = NULL; 
 struct list_head *target_list; 
 wait_queue_head_t *target_wait; 
 struct binder_transaction *in_reply_to = NULL; 
 struct binder_transaction_log_entry *e; 
 uint32_t return_error; 
 
 ....... 
 
 if (reply) { 
  ...... 
 } else { 
  if (tr->target.handle) { 
   ...... 
  } else { 
   target_node = binder_context_mgr_node; 
   if (target_node == NULL) { 
    return_error = BR_DEAD_REPLY; 
    goto err_no_context_mgr_node; 
   } 
  } 
  ...... 
  target_proc = target_node->proc; 
  if (target_proc == NULL) { 
   return_error = BR_DEAD_REPLY; 
   goto err_dead_binder; 
  } 
  if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) { 
   ...... 
  } 
 } 
 if (target_thread) { 
  ...... 
 } else { 
  target_list = &target_proc->todo; 
  target_wait = &target_proc->wait; 
 } 
 ...... 
 
 /* TODO: reuse incoming transaction for reply */ 
 t = kzalloc(sizeof(*t), GFP_KERNEL); 
 if (t == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_alloc_t_failed; 
 } 
 binder_stats.obj_created[BINDER_STAT_TRANSACTION]++; 
 
 tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); 
 if (tcomplete == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_alloc_tcomplete_failed; 
 } 
 binder_stats.obj_created[BINDER_STAT_TRANSACTION_COMPLETE]++; 
 
 t->debug_id = ++binder_last_id; 
  
 ...... 
 
 
 if (!reply && !(tr->flags & TF_ONE_WAY)) 
  t->from = thread; 
 else 
  t->from = NULL; 
 t->sender_euid = proc->tsk->cred->euid; 
 t->to_proc = target_proc; 
 t->to_thread = target_thread; 
 t->code = tr->code; 
 t->flags = tr->flags; 
 t->priority = task_nice(current); 
 t->buffer = binder_alloc_buf(target_proc, tr->data_size, 
  tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); 
 if (t->buffer == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_binder_alloc_buf_failed; 
 } 
 t->buffer->allow_user_free = 0; 
 t->buffer->debug_id = t->debug_id; 
 t->buffer->transaction = t; 
 t->buffer->target_node = target_node; 
 if (target_node) 
  binder_inc_node(target_node, 1, 0, NULL); 
 
 offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 
 
 if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { 
  ...... 
  return_error = BR_FAILED_REPLY; 
  goto err_copy_data_failed; 
 } 
 
 ...... 
 
 if (reply) { 
  ...... 
 } else if (!(t->flags & TF_ONE_WAY)) { 
  BUG_ON(t->buffer->async_transaction != 0); 
  t->need_reply = 1; 
  t->from_parent = thread->transaction_stack; 
  thread->transaction_stack = t; 
 } else { 
  ...... 
 } 
 
 t->work.type = BINDER_WORK_TRANSACTION; 
 list_add_tail(&t->work.entry, target_list); 
 tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; 
 list_add_tail(&tcomplete->entry, &thread->todo); 
 if (target_wait) 
  wake_up_interruptible(target_wait); 
 return; 
 
 ...... 
} 

        注意,這裡的參數reply = 0,表示這是一個BC_TRANSACTION命令。

        前面我們提到,傳給驅動程序的handle值為0,即這裡的tr->target.handle = 0,表示請求的目標Binder對象是Service Manager,因此有:

target_node = binder_context_mgr_node; 
target_proc = target_node->proc; 
target_list = &target_proc->todo; 
target_wait = &target_proc->wait; 

        其中binder_context_mgr_node是在Service Manager通知Binder驅動程序它是守護過程時創建的。

        接著創建一個待完成事項tcomplete,它的類型為struct binder_work,這是等一會要保存在當前線程的todo隊列去的,表示當前線程有一個待完成的事務。緊跟著創建一個待處理事務t,它的類型為struct binder_transaction,這是等一會要存在到Service Manager的todo隊列去的,表示Service Manager當前有一個事務需要處理。同時,這個待處理事務t也要存放在當前線程的待完成事務transaction_stack列表中去:

                       t->from_parent = thread->transaction_stack;  
                       thread->transaction_stack = t;  

        這樣表明當前線程還有事務要處理。

        繼續往下看,就是分別把tcomplete和t放在當前線程thread和Service Manager進程的todo隊列去了:

t->work.type = BINDER_WORK_TRANSACTION; 
list_add_tail(&t->work.entry, target_list); 
tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; 
list_add_tail(&tcomplete->entry, &thread->todo); 

        最後,Service Manager有事情可做了,就要喚醒它了:

                     wake_up_interruptible(target_wait);  

        前面我們提到,此時Service Manager正在等待Client的請求,也就是Service Manager此時正在進入到Binder驅動程序的binder_thread_read函數中,並且休眠在target->wait上,具體參考淺談Service Manager成為Android進程間通信(IPC)機制Binder守護進程之路一文。

        這裡,我們暫時忽略Service Manager被喚醒之後的情景,繼續看當前線程的執行。

        函數binder_transaction執行完成之後,就一路返回到binder_ioctl函數裡去了。函數binder_ioctl從binder_thread_write函數調用處返回後,發現bwr.read_size大於0,於是就進入到binder_thread_read函數去了:

static int 
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed, int non_block) 
{ 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 int ret = 0; 
 int wait_for_proc_work; 
 
 if (*consumed == 0) { 
  if (put_user(BR_NOOP, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
 } 
 
retry: 
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 
 
 ...... 
  
 if (wait_for_proc_work) { 
  ...... 
 } else { 
  if (non_block) { 
   if (!binder_has_thread_work(thread)) 
    ret = -EAGAIN; 
  } else 
   ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); 
 } 
 
 ...... 
 
 while (1) { 
  uint32_t cmd; 
  struct binder_transaction_data tr; 
  struct binder_work *w; 
  struct binder_transaction *t = NULL; 
 
  if (!list_empty(&thread->todo)) 
   w = list_first_entry(&thread->todo, struct binder_work, entry); 
  else if (!list_empty(&proc->todo) && wait_for_proc_work) 
   w = list_first_entry(&proc->todo, struct binder_work, entry); 
  else { 
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ 
    goto retry; 
   break; 
  } 
 
  if (end - ptr < sizeof(tr) + 4) 
   break; 
 
  switch (w->type) { 
  ...... 
  case BINDER_WORK_TRANSACTION_COMPLETE: { 
   cmd = BR_TRANSACTION_COMPLETE; 
   if (put_user(cmd, (uint32_t __user *)ptr)) 
    return -EFAULT; 
   ptr += sizeof(uint32_t); 
 
   binder_stat_br(proc, thread, cmd); 
   if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE) 
    printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE\n", 
    proc->pid, thread->pid); 
 
   list_del(&w->entry); 
   kfree(w); 
   binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++; 
            } break; 
  ...... 
  } 
 
  if (!t) 
   continue; 
 
  ...... 
 } 
 
done: 
 ...... 
 return 0; 
} 

       函數首先是寫入一個操作碼BR_NOOP到用戶傳進來的緩沖區中去。

      回憶一下上面的binder_transaction函數,這裡的thread->transaction_stack != NULL,並且thread->todo也不為空,所以線程不會進入休眠狀態。

      進入while循環中,首先是從thread->todo隊列中取回待處理事項w,w的類型為BINDER_WORK_TRANSACTION_COMPLETE,這也是在binder_transaction函數裡面設置的。對BINDER_WORK_TRANSACTION_COMPLETE的處理也很簡單,只是把一個操作碼BR_TRANSACTION_COMPLETE寫回到用戶傳進來的緩沖區中去。這時候,用戶傳進來的緩沖區就包含兩個操作碼了,分別是BR_NOOP和BINDER_WORK_TRANSACTION_COMPLETE。

      binder_thread_read執行完之後,返回到binder_ioctl函數中,將操作結果寫回到用戶空間中去:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { 
 ret = -EFAULT; 
 goto err; 
} 

       最後就返回到IPCThreadState::talkWithDriver函數中了。

       IPCThreadState::talkWithDriver函數從下面語句:

                  ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)  

       返回後,首先是清空之前寫入Binder驅動程序的內容:

if (bwr.write_consumed > 0) { 
  if (bwr.write_consumed < (ssize_t)mOut.dataSize()) 
   mOut.remove(0, bwr.write_consumed); 
  else 
   mOut.setDataSize(0); 
} 


       接著是設置從Binder驅動程序讀取的內容:

if (bwr.read_consumed > 0) { 
  mIn.setDataSize(bwr.read_consumed); 
  mIn.setDataPosition(0); 
} 

       然後就返回到IPCThreadState::waitForResponse去了。IPCThreadState::waitForResponse函數的處理也很簡單,就是處理剛才從Binder驅動程序讀入內容了。從前面的分析中,我們知道,從Binder驅動程序讀入的內容就是兩個整數了,分別是BR_NOOP和BR_TRANSACTION_COMPLETE。對BR_NOOP的處理很簡單,正如它的名字所示,什麼也不做;而對BR_TRANSACTION_COMPLETE的處理,就分情況了,如果這個請求是異步的,那個整個BC_TRANSACTION操作就完成了,如果這個請求是同步的,即要等待回復的,也就是reply不為空,那麼還要繼續通過IPCThreadState::talkWithDriver進入到Binder驅動程序中去等待BC_TRANSACTION操作的處理結果。

      這裡屬於後一種情況,於是再次通過IPCThreadState::talkWithDriver進入到Binder驅動程序的binder_ioctl函數中。不過這一次在binder_ioctl函數中,bwr.write_size等於0,而bwr.read_size大於0,於是再次進入到binder_thread_read函數中。這時候thread->transaction_stack仍然不為NULL,不過thread->todo隊列已經為空了,因為前面我們已經處理過thread->todo隊列的內容了,於是就通過下面語句:

                 ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  

      進入休眠狀態了,等待Service Manager的喚醒。

      現在,我們終於可以回到Service Manager被喚醒之後的過程了。前面我們說過,Service Manager此時正在binder_thread_read函數中休眠中:

static int 
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed, int non_block) 
{ 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 int ret = 0; 
 int wait_for_proc_work; 
 
 if (*consumed == 0) { 
  if (put_user(BR_NOOP, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
 } 
 
retry: 
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 
 
 ...... 
 
 if (wait_for_proc_work) { 
  ...... 
  if (non_block) { 
   if (!binder_has_proc_work(proc, thread)) 
    ret = -EAGAIN; 
  } else 
   ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread)); 
 } else { 
  ...... 
 } 
  
 ...... 
 
 while (1) { 
  uint32_t cmd; 
  struct binder_transaction_data tr; 
  struct binder_work *w; 
  struct binder_transaction *t = NULL; 
 
  if (!list_empty(&thread->todo)) 
   w = list_first_entry(&thread->todo, struct binder_work, entry); 
  else if (!list_empty(&proc->todo) && wait_for_proc_work) 
   w = list_first_entry(&proc->todo, struct binder_work, entry); 
  else { 
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ 
    goto retry; 
   break; 
  } 
 
  if (end - ptr < sizeof(tr) + 4) 
   break; 
 
  switch (w->type) { 
  case BINDER_WORK_TRANSACTION: { 
   t = container_of(w, struct binder_transaction, work); 
          } break; 
  ...... 
  } 
 
  if (!t) 
   continue; 
 
  BUG_ON(t->buffer == NULL); 
  if (t->buffer->target_node) { 
   struct binder_node *target_node = t->buffer->target_node; 
   tr.target.ptr = target_node->ptr; 
   tr.cookie = target_node->cookie; 
   t->saved_priority = task_nice(current); 
   if (t->priority < target_node->min_priority && 
    !(t->flags & TF_ONE_WAY)) 
    binder_set_nice(t->priority); 
   else if (!(t->flags & TF_ONE_WAY) || 
    t->saved_priority > target_node->min_priority) 
    binder_set_nice(target_node->min_priority); 
   cmd = BR_TRANSACTION; 
  } else { 
   ...... 
  } 
  tr.code = t->code; 
  tr.flags = t->flags; 
  tr.sender_euid = t->sender_euid; 
 
  if (t->from) { 
   struct task_struct *sender = t->from->proc->tsk; 
   tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns); 
  } else { 
   ...... 
  } 
 
  tr.data_size = t->buffer->data_size; 
  tr.offsets_size = t->buffer->offsets_size; 
  tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; 
  tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); 
 
  if (put_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (copy_to_user(ptr, &tr, sizeof(tr))) 
   return -EFAULT; 
  ptr += sizeof(tr); 
 
  ...... 
 
  list_del(&t->work.entry); 
  t->buffer->allow_user_free = 1; 
  if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { 
   t->to_parent = thread->transaction_stack; 
   t->to_thread = thread; 
   thread->transaction_stack = t; 
  } else { 
   ...... 
  } 
  break; 
 } 
 
done: 
 
 *consumed = ptr - buffer; 
 ...... 
 return 0; 
} 

        這裡就是從語句中喚醒了:

                       ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));  

        Service Manager喚醒過來看,繼續往下執行,進入到while循環中。首先是從proc->todo中取回待處理事項w。這個事項w的類型是BINDER_WORK_TRANSACTION,這是上面調用binder_transaction的時候設置的,於是通過w得到待處理事務t:

                    t = container_of(w, struct binder_transaction, work);  

        接下來的內容,就把cmd和t->buffer的內容拷貝到用戶傳進來的緩沖區去了,這裡就是Service Manager從用戶空間傳進來的緩沖區了:

if (put_user(cmd, (uint32_t __user *)ptr)) 
 return -EFAULT; 
ptr += sizeof(uint32_t); 
if (copy_to_user(ptr, &tr, sizeof(tr))) 
 return -EFAULT; 
ptr += sizeof(tr); 

        注意,這裡先是把t->buffer的內容拷貝到本地變量tr中,再拷貝到用戶空間緩沖區去。關於t->buffer內容的拷貝,請參考Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析一文,它的一個關鍵地方是Binder驅動程序和Service Manager守護進程共享了同一個物理內存的內容,拷貝的只是這個物理內存在用戶空間的虛擬地址回去:

                   tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;  
                   tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));  

       對於Binder驅動程序這次操作來說,這個事項就算是處理完了,就要從todo隊列中刪除了:

                    list_del(&t->work.entry);  

       緊接著,還不放刪除這個事務,因為它還要等待Service Manager處理完成後,再進一步處理,因此,放在thread->transaction_stack隊列中:

                   t->to_parent = thread->transaction_stack;  
                   t->to_thread = thread;  
                   thread->transaction_stack = t;  

       還要注意的一個地方是,上面寫入的cmd = BR_TRANSACTION,告訴Service Manager守護進程,它要做什麼事情,後面我們會看到相應的分析。

       這樣,binder_thread_read函數就處理完了,回到binder_ioctl函數中,同樣是操作結果寫回到用戶空間的緩沖區中去:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { 
 ret = -EFAULT; 
 goto err; 
} 

       最後,就返回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函數去了:

void binder_loop(struct binder_state *bs, binder_handler func) 
{ 
 int res; 
 struct binder_write_read bwr; 
 unsigned readbuf[32]; 
 
 bwr.write_size = 0; 
 bwr.write_consumed = 0; 
 bwr.write_buffer = 0; 
  
 readbuf[0] = BC_ENTER_LOOPER; 
 binder_write(bs, readbuf, sizeof(unsigned)); 
 
 for (;;) { 
  bwr.read_size = sizeof(readbuf); 
  bwr.read_consumed = 0; 
  bwr.read_buffer = (unsigned) readbuf; 
 
  res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); 
 
  if (res < 0) { 
   LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno)); 
   break; 
  } 
 
  res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func); 
  if (res == 0) { 
   LOGE("binder_loop: unexpected reply?!\n"); 
   break; 
  } 
  if (res < 0) { 
   LOGE("binder_loop: io error %d %s\n", res, strerror(errno)); 
   break; 
  } 
 } 
} 

        這裡就是從下面的語句:

                      res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);  

        返回來了。接著就進入binder_parse函數處理從Binder驅動程序裡面讀取出來的數據:

int binder_parse(struct binder_state *bs, struct binder_io *bio, 
     uint32_t *ptr, uint32_t size, binder_handler func) 
{ 
 int r = 1; 
 uint32_t *end = ptr + (size / 4); 
 
 while (ptr < end) { 
  uint32_t cmd = *ptr++; 
  switch(cmd) { 
  ...... 
  case BR_TRANSACTION: { 
   struct binder_txn *txn = (void *) ptr; 
   ...... 
   if (func) { 
    unsigned rdata[256/4]; 
    struct binder_io msg; 
    struct binder_io reply; 
    int res; 
 
    bio_init(&reply, rdata, sizeof(rdata), 4); 
    bio_init_from_txn(&msg, txn); 
    res = func(bs, txn, &msg, &reply); 
    binder_send_reply(bs, &reply, txn->data, res); 
   } 
   ptr += sizeof(*txn) / sizeof(uint32_t); 
   break; 
        } 
  ...... 
  default: 
   LOGE("parse: OOPS %d\n", cmd); 
   return -1; 
  } 
 } 
 
 return r; 
} 

         前面我們說過,Binder驅動程序寫入到用戶空間的緩沖區中的cmd為BR_TRANSACTION,因此,這裡我們只關注BR_TRANSACTION相關的邏輯。

         這裡用到的兩個數據結構struct binder_txn和struct binder_io可以參考前面一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析,這裡就不復述了。

         接著往下看,函數調bio_init來初始化reply變量:

void bio_init(struct binder_io *bio, void *data, 
    uint32_t maxdata, uint32_t maxoffs) 
{ 
 uint32_t n = maxoffs * sizeof(uint32_t); 
 
 if (n > maxdata) { 
  bio->flags = BIO_F_OVERFLOW; 
  bio->data_avail = 0; 
  bio->offs_avail = 0; 
  return; 
 } 
 
 bio->data = bio->data0 = data + n; 
 bio->offs = bio->offs0 = data; 
 bio->data_avail = maxdata - n; 
 bio->offs_avail = maxoffs; 
 bio->flags = 0; 
} 

        接著又調用bio_init_from_txn來初始化msg變量:

void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn) 
{ 
 bio->data = bio->data0 = txn->data; 
 bio->offs = bio->offs0 = txn->offs; 
 bio->data_avail = txn->data_size; 
 bio->offs_avail = txn->offs_size / 4; 
 bio->flags = BIO_F_SHARED; 
} 

       最後,真正進行處理的函數是從參數中傳進來的函數指針func,這裡就是定義在frameworks/base/cmds/servicemanager/service_manager.c文件中的svcmgr_handler函數:

int svcmgr_handler(struct binder_state *bs, 
     struct binder_txn *txn, 
     struct binder_io *msg, 
     struct binder_io *reply) 
{ 
 struct svcinfo *si; 
 uint16_t *s; 
 unsigned len; 
 void *ptr; 
 uint32_t strict_policy; 
 
// LOGI("target=%p code=%d pid=%d uid=%d\n", 
//   txn->target, txn->code, txn->sender_pid, txn->sender_euid); 
 
 if (txn->target != svcmgr_handle) 
  return -1; 
 
 // Equivalent to Parcel::enforceInterface(), reading the RPC 
 // header with the strict mode policy mask and the interface name. 
 // Note that we ignore the strict_policy and don't propagate it 
 // further (since we do no outbound RPCs anyway). 
 strict_policy = bio_get_uint32(msg); 
 s = bio_get_string16(msg, &len); 
 if ((len != (sizeof(svcmgr_id) / 2)) || 
  memcmp(svcmgr_id, s, sizeof(svcmgr_id))) { 
  fprintf(stderr,"invalid id %s\n", str8(s)); 
  return -1; 
 } 
 
 switch(txn->code) { 
 case SVC_MGR_GET_SERVICE: 
 case SVC_MGR_CHECK_SERVICE: 
  s = bio_get_string16(msg, &len); 
  ptr = do_find_service(bs, s, len); 
  if (!ptr) 
   break; 
  bio_put_ref(reply, ptr); 
  return 0; 
 
 ...... 
 } 
 default: 
  LOGE("unknown code %d\n", txn->code); 
  return -1; 
 } 
 
 bio_put_uint32(reply, 0); 
 return 0; 
} 

        這裡, Service Manager要處理的code是SVC_MGR_CHECK_SERVICE,這是在前面的BpServiceManager::checkService函數裡面設置的。

        回憶一下,在BpServiceManager::checkService時,傳給Binder驅動程序的參數為:

                  writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);   
                  writeString16("android.os.IServiceManager");    
                  writeString16("media.player");    

       這裡的語句:

strict_policy = bio_get_uint32(msg); 
s = bio_get_string16(msg, &len); 
s = bio_get_string16(msg, &len); 

       其中,會驗證一下傳進來的第二個參數,即"android.os.IServiceManager"是否正確,這個是驗證RPC頭,注釋已經說得很清楚了。

       最後,就是調用do_find_service函數查找是存在名稱為"media.player"的服務了。回憶一下前面一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析,MediaPlayerService已經把一個名稱為"media.player"的服務注冊到Service Manager中,所以這裡一定能找到。我們看看do_find_service這個函數:

void *do_find_service(struct binder_state *bs, uint16_t *s, unsigned len) 
{ 
 struct svcinfo *si; 
 si = find_svc(s, len); 
 
// LOGI("check_service('%s') ptr = %p\n", str8(s), si ? si->ptr : 0); 
 if (si && si->ptr) { 
  return si->ptr; 
 } else { 
  return 0; 
 } 
} 

       這裡又調用了find_svc函數:

struct svcinfo *find_svc(uint16_t *s16, unsigned len) 
{ 
 struct svcinfo *si; 
 
 for (si = svclist; si; si = si->next) { 
  if ((len == si->len) && 
   !memcmp(s16, si->name, len * sizeof(uint16_t))) { 
   return si; 
  } 
 } 
 return 0; 
} 

       就是在svclist列表中查找對應名稱的svcinfo了。

       然後返回到do_find_service函數中。回憶一下前面一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析,這裡的si->ptr就是指MediaPlayerService這個Binder實體在Service Manager進程中的句柄值了。

       回到svcmgr_handler函數中,調用bio_put_ref函數將這個Binder引用寫回到reply參數。我們看看bio_put_ref的實現:

void bio_put_ref(struct binder_io *bio, void *ptr) 
{ 
 struct binder_object *obj; 
 
 if (ptr) 
  obj = bio_alloc_obj(bio); 
 else 
  obj = bio_alloc(bio, sizeof(*obj)); 
 
 if (!obj) 
  return; 
 
 obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; 
 obj->type = BINDER_TYPE_HANDLE; 
 obj->pointer = ptr; 
 obj->cookie = 0; 
} 

        這裡很簡單,就是把一個類型為BINDER_TYPE_HANDLE的binder_object寫入到reply緩沖區中去。這裡的binder_object就是相當於是flat_binder_obj了,具體可以參考Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析一文。

        再回到svcmgr_handler函數中,最後,還寫入一個0值到reply緩沖區中,表示操作結果碼:

                  bio_put_uint32(reply, 0);  

        最後返回到binder_parse函數中,調用binder_send_reply函數將操作結果反饋給Binder驅動程序:

void binder_send_reply(struct binder_state *bs, 
      struct binder_io *reply, 
      void *buffer_to_free, 
      int status) 
{ 
 struct { 
  uint32_t cmd_free; 
  void *buffer; 
  uint32_t cmd_reply; 
  struct binder_txn txn; 
 } __attribute__((packed)) data; 
 
 data.cmd_free = BC_FREE_BUFFER; 
 data.buffer = buffer_to_free; 
 data.cmd_reply = BC_REPLY; 
 data.txn.target = 0; 
 data.txn.cookie = 0; 
 data.txn.code = 0; 
 if (status) { 
  data.txn.flags = TF_STATUS_CODE; 
  data.txn.data_size = sizeof(int); 
  data.txn.offs_size = 0; 
  data.txn.data = &status; 
  data.txn.offs = 0; 
 } else { 
  data.txn.flags = 0; 
  data.txn.data_size = reply->data - reply->data0; 
  data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0); 
  data.txn.data = reply->data0; 
  data.txn.offs = reply->offs0; 
 } 
 binder_write(bs, &data, sizeof(data)); 
} 

        注意,這裡的status參數為0。從這裡可以看出,binder_send_reply告訴Binder驅動程序執行BC_FREE_BUFFER和BC_REPLY命令,前者釋放之前在binder_transaction分配的空間,地址為buffer_to_free,buffer_to_free這個地址是Binder驅動程序把自己在內核空間用的地址轉換成用戶空間地址再傳給Service Manager的,所以Binder驅動程序拿到這個地址後,知道怎麼樣釋放這個空間;後者告訴Binder驅動程序,它的SVC_MGR_CHECK_SERVICE操作已經完成了,要查詢的服務的句柄值也是保存在data.txn.data,操作結果碼是0,也是保存在data.txn.data中。

        再來看binder_write函數:

int binder_write(struct binder_state *bs, void *data, unsigned len) 
{ 
 struct binder_write_read bwr; 
 int res; 
 bwr.write_size = len; 
 bwr.write_consumed = 0; 
 bwr.write_buffer = (unsigned) data; 
 bwr.read_size = 0; 
 bwr.read_consumed = 0; 
 bwr.read_buffer = 0; 
 res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); 
 if (res < 0) { 
  fprintf(stderr,"binder_write: ioctl failed (%s)\n", 
    strerror(errno)); 
 } 
 return res; 
} 

        這裡可以看出,只有寫操作,沒有讀操作,即read_size為0。

        這裡又是一個ioctl的BINDER_WRITE_READ操作。直入到驅動程序的binder_ioctl函數後,執行BINDER_WRITE_READ命令,這裡就不累述了。

        最後,從binder_ioctl執行到binder_thread_write函數,首先是執行BC_FREE_BUFFER命令,這個命令的執行在前面一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析已經介紹過了,這裡就不再累述了。

        我們重點關注BC_REPLY命令的執行:

int 
binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed) 
{ 
 uint32_t cmd; 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 while (ptr < end && thread->return_error == BR_OK) { 
  if (get_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { 
   binder_stats.bc[_IOC_NR(cmd)]++; 
   proc->stats.bc[_IOC_NR(cmd)]++; 
   thread->stats.bc[_IOC_NR(cmd)]++; 
  } 
  switch (cmd) { 
  ...... 
  case BC_TRANSACTION: 
  case BC_REPLY: { 
   struct binder_transaction_data tr; 
 
   if (copy_from_user(&tr, ptr, sizeof(tr))) 
    return -EFAULT; 
   ptr += sizeof(tr); 
   binder_transaction(proc, thread, &tr, cmd == BC_REPLY); 
   break; 
      } 
 
  ...... 
  *consumed = ptr - buffer; 
 } 
 return 0; 
} 

        又再次進入到binder_transaction函數:

static void 
binder_transaction(struct binder_proc *proc, struct binder_thread *thread, 
struct binder_transaction_data *tr, int reply) 
{ 
 struct binder_transaction *t; 
 struct binder_work *tcomplete; 
 size_t *offp, *off_end; 
 struct binder_proc *target_proc; 
 struct binder_thread *target_thread = NULL; 
 struct binder_node *target_node = NULL; 
 struct list_head *target_list; 
 wait_queue_head_t *target_wait; 
 struct binder_transaction *in_reply_to = NULL; 
 struct binder_transaction_log_entry *e; 
 uint32_t return_error; 
 
 ...... 
 
 if (reply) { 
  in_reply_to = thread->transaction_stack; 
  if (in_reply_to == NULL) { 
   ...... 
   return_error = BR_FAILED_REPLY; 
   goto err_empty_call_stack; 
  } 
  ...... 
  thread->transaction_stack = in_reply_to->to_parent; 
  target_thread = in_reply_to->from; 
  ...... 
  target_proc = target_thread->proc; 
 } else { 
  ...... 
 } 
 if (target_thread) { 
  e->to_thread = target_thread->pid; 
  target_list = &target_thread->todo; 
  target_wait = &target_thread->wait; 
 } else { 
  ...... 
 } 
  
 
 /* TODO: reuse incoming transaction for reply */ 
 t = kzalloc(sizeof(*t), GFP_KERNEL); 
 if (t == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_alloc_t_failed; 
 } 
 binder_stats.obj_created[BINDER_STAT_TRANSACTION]++; 
 
 tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); 
 if (tcomplete == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_alloc_tcomplete_failed; 
 } 
 ...... 
 
 if (!reply && !(tr->flags & TF_ONE_WAY)) 
  t->from = thread; 
 else 
  t->from = NULL; 
 t->sender_euid = proc->tsk->cred->euid; 
 t->to_proc = target_proc; 
 t->to_thread = target_thread; 
 t->code = tr->code; 
 t->flags = tr->flags; 
 t->priority = task_nice(current); 
 t->buffer = binder_alloc_buf(target_proc, tr->data_size, 
  tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); 
 if (t->buffer == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_binder_alloc_buf_failed; 
 } 
 t->buffer->allow_user_free = 0; 
 t->buffer->debug_id = t->debug_id; 
 t->buffer->transaction = t; 
 t->buffer->target_node = target_node; 
 if (target_node) 
  binder_inc_node(target_node, 1, 0, NULL); 
 
 offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 
 
 if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { 
  binder_user_error("binder: %d:%d got transaction with invalid " 
   "data ptr\n", proc->pid, thread->pid); 
  return_error = BR_FAILED_REPLY; 
  goto err_copy_data_failed; 
 } 
 if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { 
  binder_user_error("binder: %d:%d got transaction with invalid " 
   "offsets ptr\n", proc->pid, thread->pid); 
  return_error = BR_FAILED_REPLY; 
  goto err_copy_data_failed; 
 } 
 ...... 
 
 off_end = (void *)offp + tr->offsets_size; 
 for (; offp < off_end; offp++) { 
  struct flat_binder_object *fp; 
  ...... 
  fp = (struct flat_binder_object *)(t->buffer->data + *offp); 
  switch (fp->type) { 
  ...... 
  case BINDER_TYPE_HANDLE: 
  case BINDER_TYPE_WEAK_HANDLE: { 
   struct binder_ref *ref = binder_get_ref(proc, fp->handle); 
   if (ref == NULL) { 
    ...... 
    return_error = BR_FAILED_REPLY; 
    goto err_binder_get_ref_failed; 
   } 
   if (ref->node->proc == target_proc) { 
    ...... 
   } else { 
    struct binder_ref *new_ref; 
    new_ref = binder_get_ref_for_node(target_proc, ref->node); 
    if (new_ref == NULL) { 
     return_error = BR_FAILED_REPLY; 
     goto err_binder_get_ref_for_node_failed; 
    } 
    fp->handle = new_ref->desc; 
    binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL); 
    ...... 
   } 
  } break; 
 
  ...... 
  } 
 } 
 
 if (reply) { 
  BUG_ON(t->buffer->async_transaction != 0); 
  binder_pop_transaction(target_thread, in_reply_to); 
 } else if (!(t->flags & TF_ONE_WAY)) { 
  ...... 
 } else { 
  ...... 
 } 
 
 t->work.type = BINDER_WORK_TRANSACTION; 
 list_add_tail(&t->work.entry, target_list); 
 tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; 
 list_add_tail(&tcomplete->entry, &thread->todo); 
 if (target_wait) 
  wake_up_interruptible(target_wait); 
 return; 
 
 ...... 
} 

        這次進入binder_transaction函數的情形和上面介紹的binder_transaction函數的情形基本一致,只是這裡的proc、thread和target_proc、target_thread調換了角色,這裡的proc和thread指的是Service Manager進程,而target_proc和target_thread指的是剛才請求SVC_MGR_CHECK_SERVICE的進程。

        那麼,這次是如何找到target_proc和target_thread呢。首先,我們注意到,這裡的reply等於1,其次,上面我們提到,Binder驅動程序在喚醒Service Manager,告訴它有一個事務t要處理時,事務t雖然從Service Manager的todo隊列中刪除了,但是仍然保留在transaction_stack中。因此,這裡可以從thread->transaction_stack找回這個等待回復的事務t,然後通過它找回target_proc和target_thread:

in_reply_to = thread->transaction_stack; 
target_thread = in_reply_to->from; 
target_list = &target_thread->todo; 
  target_wait = &target_thread->wait; 

       再接著往下看,由於Service Manager返回來了一個Binder引用,所以這裡要處理一下,就是中間的for循環了。這是一個BINDER_TYPE_HANDLE類型的Binder引用,這是前面設置的。先把t->buffer->data的內容轉換為一個struct flat_binder_object對象fp,這裡的fp->handle值就是這個Service在Service Manager進程裡面的引用值了。接通過調用binder_get_ref函數得到Binder引用對象struct binder_ref類型的對象ref:

                     struct binder_ref *ref = binder_get_ref(proc, fp->handle);  

       這裡一定能找到,因為前面MediaPlayerService執行IServiceManager::addService的時候把自己添加到Service Manager的時候,會在Service Manager進程中創建這個Binder引用,然後把這個Binder引用的句柄值返回給Service Manager用戶空間。

       這裡面的ref->node->proc不等於target_proc,因為這個Binder實體是屬於創建MediaPlayerService的進程的,而不是請求這個服務的遠程接口的進程的,因此,這裡調用binder_get_ref_for_node函數為這個Binder實體在target_proc創建一個引用:

struct binder_ref *new_ref; 
new_ref = binder_get_ref_for_node(target_proc, ref->node); 

       然後增加引用計數:

                   binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);  

     這樣,返回數據中的Binder對象就處理完成了。注意,這裡會把fp->handle的值改為在target_proc中的引用值:

                        fp->handle = new_ref->desc;  

     這裡就相當於是把t->buffer->data裡面的Binder對象的句柄值改寫了。因為這是在另外一個不同的進程裡面的Binder引用,所以句柄值當然要用新的了。這個值最終是要拷貝回target_proc進程的用戶空間去的。

      再往下看:

if (reply) { 
  BUG_ON(t->buffer->async_transaction != 0); 
  binder_pop_transaction(target_thread, in_reply_to); 
} else if (!(t->flags & TF_ONE_WAY)) { 
  ...... 
} else { 
  ...... 
} 

       這裡reply等於1,執行binder_pop_transaction函數把當前事務in_reply_to從target_thread->transaction_stack隊列中刪掉,這是上次調用binder_transaction函數的時候設置的,現在不需要了,所以把它刪掉。

       再往後的邏輯就跟前面執行binder_transaction函數時候一樣了,這裡不再介紹。最後的結果就是喚醒請求SVC_MGR_CHECK_SERVICE操作的線程:

                      if (target_wait)  
                                     wake_up_interruptible(target_wait);  

       這樣,Service Manger回復調用SVC_MGR_CHECK_SERVICE請求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函數等待下一個Client請求的到來。事實上,Service Manger回到binder_loop函數再次執行ioctl函數時候,又會再次進入到binder_thread_read函數。這時個會發現thread->todo不為空,這是因為剛才我們調用了:

                        list_add_tail(&tcomplete->entry, &thread->todo);  

       把一個工作項tcompelete放在了在thread->todo中,這個tcompelete的type為BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驅動程序會執行下面操作:

switch (w->type) { 
case BINDER_WORK_TRANSACTION_COMPLETE: { 
 cmd = BR_TRANSACTION_COMPLETE; 
 if (put_user(cmd, (uint32_t __user *)ptr)) 
  return -EFAULT; 
 ptr += sizeof(uint32_t); 
 
 list_del(&w->entry); 
 kfree(w); 
  
 } break; 
 ...... 
} 

       binder_loop函數執行完這個ioctl調用後,才會在下一次調用ioctl進入到Binder驅動程序進入休眠狀態,等待下一次Client的請求。

      上面講到調用請求SVC_MGR_CHECK_SERVICE操作的線程被喚醒了,於是,重新執行binder_thread_read函數:

static int 
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed, int non_block) 
{ 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 int ret = 0; 
 int wait_for_proc_work; 
 
 if (*consumed == 0) { 
  if (put_user(BR_NOOP, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
 } 
 
retry: 
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 
 
 ...... 
 
 if (wait_for_proc_work) { 
  ...... 
 } else { 
  if (non_block) { 
   if (!binder_has_thread_work(thread)) 
    ret = -EAGAIN; 
  } else 
   ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); 
 } 
  
 ...... 
 
 while (1) { 
  uint32_t cmd; 
  struct binder_transaction_data tr; 
  struct binder_work *w; 
  struct binder_transaction *t = NULL; 
 
  if (!list_empty(&thread->todo)) 
   w = list_first_entry(&thread->todo, struct binder_work, entry); 
  else if (!list_empty(&proc->todo) && wait_for_proc_work) 
   w = list_first_entry(&proc->todo, struct binder_work, entry); 
  else { 
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ 
    goto retry; 
   break; 
  } 
 
  ...... 
 
  switch (w->type) { 
  case BINDER_WORK_TRANSACTION: { 
   t = container_of(w, struct binder_transaction, work); 
          } break; 
  ...... 
  } 
 
  if (!t) 
   continue; 
 
  BUG_ON(t->buffer == NULL); 
  if (t->buffer->target_node) { 
   ...... 
  } else { 
   tr.target.ptr = NULL; 
   tr.cookie = NULL; 
   cmd = BR_REPLY; 
  } 
  tr.code = t->code; 
  tr.flags = t->flags; 
  tr.sender_euid = t->sender_euid; 
 
  if (t->from) { 
   ...... 
  } else { 
   tr.sender_pid = 0; 
  } 
 
  tr.data_size = t->buffer->data_size; 
  tr.offsets_size = t->buffer->offsets_size; 
  tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; 
  tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); 
 
  if (put_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (copy_to_user(ptr, &tr, sizeof(tr))) 
   return -EFAULT; 
  ptr += sizeof(tr); 
 
  ...... 
 
  list_del(&t->work.entry); 
  t->buffer->allow_user_free = 1; 
  if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { 
   ...... 
  } else { 
   t->buffer->transaction = NULL; 
   kfree(t); 
   binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; 
  } 
  break; 
 } 
 
done: 
 ...... 
 return 0; 
} 

        就是從下面這個調用:

                  ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  

       被喚醒過來了。在while循環中,從thread->todo得到w,w->type為BINDER_WORK_TRANSACTION,於是,得到t。從上面可以知道,Service Manager返回來了一個Binder引用和一個結果碼0回來,寫在t->buffer->data裡面,現在把t->buffer->data加上proc->user_buffer_offset,得到用戶空間地址,保存在tr.data.ptr.buffer裡面,這樣用戶空間就可以訪問這個數據了。由於cmd不等於BR_TRANSACTION,這時就可以把t刪除掉了,因為以後都不需要用了。

       執行完這個函數後,就返回到binder_ioctl函數,執行下面語句,把數據返回給用戶空間:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { 
 ret = -EFAULT; 
 goto err; 
} 

       接著返回到用戶空間IPCThreadState::talkWithDriver函數,最後返回到IPCThreadState::waitForResponse函數,最終執行到下面語句:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) 
{ 
 int32_t cmd; 
 int32_t err; 
 
 while (1) { 
  if ((err=talkWithDriver()) < NO_ERROR) break; 
   
  ...... 
 
  cmd = mIn.readInt32(); 
 
  ...... 
 
  switch (cmd) { 
  ...... 
  case BR_REPLY: 
   { 
    binder_transaction_data tr; 
    err = mIn.read(&tr, sizeof(tr)); 
    LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); 
    if (err != NO_ERROR) goto finish; 
 
    if (reply) { 
     if ((tr.flags & TF_STATUS_CODE) == 0) { 
      reply->ipcSetDataReference( 
       reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), 
       tr.data_size, 
       reinterpret_cast<const size_t*>(tr.data.ptr.offsets), 
       tr.offsets_size/sizeof(size_t), 
       freeBuffer, this); 
     } else { 
      ...... 
     } 
    } else { 
     ...... 
    } 
   } 
   goto finish; 
 
  ...... 
  } 
 } 
 
finish: 
 ...... 
 return err; 
} 

       注意,這裡的tr.flags等於0,這個是在上面的binder_send_reply函數裡設置的。接著就把結果保存在reply了:

reply->ipcSetDataReference( 
  reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), 
  tr.data_size, 
  reinterpret_cast<const size_t*>(tr.data.ptr.offsets), 
  tr.offsets_size/sizeof(size_t), 
  freeBuffer, this); 

       我們簡單看一下Parcel::ipcSetDataReference函數的實現:

void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize, 
 const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie) 
{ 
 freeDataNoInit(); 
 mError = NO_ERROR; 
 mData = const_cast<uint8_t*>(data); 
 mDataSize = mDataCapacity = dataSize; 
 //LOGI("setDataReference Setting data size of %p to %lu (pid=%d)\n", this, mDataSize, getpid()); 
 mDataPos = 0; 
 LOGV("setDataReference Setting data pos of %p to %d\n", this, mDataPos); 
 mObjects = const_cast<size_t*>(objects); 
 mObjectsSize = mObjectsCapacity = objectsCount; 
 mNextObjectHint = 0; 
 mOwner = relFunc; 
 mOwnerCookie = relCookie; 
 scanForFds(); 
} 

        上面提到,返回來的數據中有一個Binder引用,因此,這裡的mObjectSize等於1,這個Binder引用對應的位置記錄在mObjects成員變量中。

        從這裡層層返回,最後回到BpServiceManager::checkService函數中:

virtual sp<IBinder> BpServiceManager::checkService( const String16& name) const 
{ 
 Parcel data, reply; 
 data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); 
 data.writeString16(name); 
 remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply); 
 return reply.readStrongBinder(); 
} 

        這裡就是從:

                 remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);  

        返回來了。我們接著看一下reply.readStrongBinder函數的實現:

sp<IBinder> Parcel::readStrongBinder() const 
{ 
 sp<IBinder> val; 
 unflatten_binder(ProcessState::self(), *this, &val); 
 return val; 
} 

        這裡調用了unflatten_binder函數來構造一個Binder對象:

status_t unflatten_binder(const sp<ProcessState>& proc, 
 const Parcel& in, sp<IBinder>* out) 
{ 
 const flat_binder_object* flat = in.readObject(false); 
  
 if (flat) { 
  switch (flat->type) { 
   case BINDER_TYPE_BINDER: 
    *out = static_cast<IBinder*>(flat->cookie); 
    return finish_unflatten_binder(NULL, *flat, in); 
   case BINDER_TYPE_HANDLE: 
    *out = proc->getStrongProxyForHandle(flat->handle); 
    return finish_unflatten_binder( 
     static_cast<BpBinder*>(out->get()), *flat, in); 
  }   
 } 
 return BAD_TYPE; 
} 

        這裡的flat->type是BINDER_TYPE_HANDLE,因此調用ProcessState::getStrongProxyForHandle函數:

sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle) 
{ 
 sp<IBinder> result; 
 
 AutoMutex _l(mLock); 
 
 handle_entry* e = lookupHandleLocked(handle); 
 
 if (e != NULL) { 
  // We need to create a new BpBinder if there isn't currently one, OR we 
  // are unable to acquire a weak reference on this current one. See comment 
  // in getWeakProxyForHandle() for more info about this. 
  IBinder* b = e->binder; 
  if (b == NULL || !e->refs->attemptIncWeak(this)) { 
   b = new BpBinder(handle); 
   e->binder = b; 
   if (b) e->refs = b->getWeakRefs(); 
   result = b; 
  } else { 
   // This little bit of nastyness is to allow us to add a primary 
   // reference to the remote proxy when this team doesn't have one 
   // but another team is sending the handle to us. 
   result.force_set(b); 
   e->refs->decWeak(this); 
  } 
 } 
 
 return result; 
} 

       這裡我們可以看到,ProcessState會把使用過的Binder遠程接口(BpBinder)緩存起來,這樣下次從Service Manager那裡請求得到相同的句柄(Handle)時就可以直接返回這個Binder遠程接口了,不用再創建一個出來。這裡是第一次使用,因此,e->binder為空,於是創建了一個BpBinder對象:

b = new BpBinder(handle); 
e->binder = b; 
if (b) e->refs = b->getWeakRefs(); 
result = b; 

       最後,函數返回到IMediaDeathNotifier::getMediaPlayerService這裡,從這個語句返回:

                   binder = sm->getService(String16("media.player"));  

        這裡,就相當於是:

                     binder = new BpBinder(handle);  

        最後,函數調用:

                   sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);  

        到了這裡,我們可以參考一下前面一篇文章淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager,就會知道,這裡的interface_cast實際上最終調用了IMediaPlayerService::asInterface函數:

android::sp<IMediaPlayerService> IMediaPlayerService::asInterface(const android::sp<android::IBinder>& obj) 
{ 
 android::sp<IServiceManager> intr; 
 if (obj != NULL) {    
  intr = static_cast<IMediaPlayerService*>( 
   obj->queryLocalInterface(IMediaPlayerService::descriptor).get()); 
  if (intr == NULL) { 
   intr = new BpMediaPlayerService(obj); 
  } 
 } 
 return intr; 
} 

        這裡的obj就是BpBinder,而BpBinder::queryLocalInterface返回NULL,因此就創建了一個BpMediaPlayerService對象:

                      intr = new BpMediaPlayerService(new BpBinder(handle));  

        因此,我們最終就得到了一個BpMediaPlayerService對象,達到我們最初的目標。

       有了這個BpMediaPlayerService這個遠程接口之後,MediaPlayer就可以調用MediaPlayerService的服務了。

        至此,Android系統進程間通信(IPC)機制Binder中的Client如何通過Service Manager的getService函數獲得Server遠程接口的過程就分析完了,Binder機制的學習就暫告一段落了。

        不過,細心的讀者可能會發現,我們這裡介紹的Binder機制都是基於C/C++語言實現的,但是我們在編寫應用程序都是基於Java語言的,那麼,我們如何使用Java語言來使用系統的Binder機制來進行進程間通信呢?這就是下一篇文章要介紹的內容了,敬請關注。

        以上就是對Android IPC Binder Client獲得Server 遠程接口過程的源碼分析,後續繼續補充相關文章,謝謝大家對本站的支持!

  1. 上一頁:
  2. 下一頁:
熱門文章
閱讀排行版
Copyright © Android教程網 All Rights Reserved