編輯:關於Android編程
Dalvik指令,根據需要的寄存器數目的不同,長度也有所不同。
如下面的結構所示,有下面的這些情況:
enum Format { k10x, // op k12x, // op vA, vB k11n, // op vA, #+B k11x, // op vAA k10t, // op +AA k20t, // op +AAAA k22x, // op vAA, vBBBB k21t, // op vAA, +BBBB k21s, // op vAA, #+BBBB k21h, // op vAA, #+BBBB00000[00000000] k21c, // op vAA, thing@BBBB k23x, // op vAA, vBB, vCC k22b, // op vAA, vBB, #+CC k22t, // op vA, vB, +CCCC k22s, // op vA, vB, #+CCCC k22c, // op vA, vB, thing@CCCC k32x, // op vAAAA, vBBBB k30t, // op +AAAAAAAA k31t, // op vAA, +BBBBBBBB k31i, // op vAA, #+BBBBBBBB k31c, // op vAA, thing@BBBBBBBB k35c, // op {vC, vD, vE, vF, vG}, thing@BBBB (B: count, A: vG) k3rc, // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB k51l, // op vAA, #+BBBBBBBBBBBBBBBB };
MIRGraph的ParseInsn方法就是用來計算指令長度的。
/* * Parse an instruction, return the length of the instruction */ int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) { const Instruction* inst = Instruction::At(code_ptr); decoded_instruction->opcode = inst->Opcode(); decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0; decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0; decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0; decoded_instruction->vC = inst->HasVRegC() ? inst->VRegC() : 0; if (inst->HasVarArgs()) { inst->GetVarArgs(decoded_instruction->arg); } return inst->SizeInCodeUnits(); }
我們之前用了8講的內容專門講指令。
下面我們將這些指令的中間細節列一下,大家從下面的表中可以查到每一條指令的格式。
const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = { // 00 NOP DF_NOP, // 01 MOVE vA, vB DF_DA | DF_UB | DF_IS_MOVE, // 02 MOVE_FROM16 vAA, vBBBB DF_DA | DF_UB | DF_IS_MOVE, // 03 MOVE_16 vAAAA, vBBBB DF_DA | DF_UB | DF_IS_MOVE, // 04 MOVE_WIDE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 05 MOVE_WIDE_FROM16 vAA, vBBBB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 06 MOVE_WIDE_16 vAAAA, vBBBB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 07 MOVE_OBJECT vA, vB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 08 MOVE_OBJECT_FROM16 vAA, vBBBB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 09 MOVE_OBJECT_16 vAAAA, vBBBB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 0A MOVE_RESULT vAA DF_DA, // 0B MOVE_RESULT_WIDE vAA DF_DA | DF_A_WIDE, // 0C MOVE_RESULT_OBJECT vAA DF_DA | DF_REF_A, // 0D MOVE_EXCEPTION vAA DF_DA | DF_REF_A | DF_NON_NULL_DST, // 0E RETURN_VOID DF_NOP, // 0F RETURN vAA DF_UA, // 10 RETURN_WIDE vAA DF_UA | DF_A_WIDE, // 11 RETURN_OBJECT vAA DF_UA | DF_REF_A, // 12 CONST_4 vA, #+B DF_DA | DF_SETS_CONST, // 13 CONST_16 vAA, #+BBBB DF_DA | DF_SETS_CONST, // 14 CONST vAA, #+BBBBBBBB DF_DA | DF_SETS_CONST, // 15 CONST_HIGH16 VAA, #+BBBB0000 DF_DA | DF_SETS_CONST, // 16 CONST_WIDE_16 vAA, #+BBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 17 CONST_WIDE_32 vAA, #+BBBBBBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000 DF_DA | DF_A_WIDE | DF_SETS_CONST, // 1A CONST_STRING vAA, string@BBBB DF_DA | DF_REF_A | DF_NON_NULL_DST, // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB DF_DA | DF_REF_A | DF_NON_NULL_DST, // 1C CONST_CLASS vAA, type@BBBB DF_DA | DF_REF_A | DF_NON_NULL_DST, // 1D MONITOR_ENTER vAA DF_UA | DF_NULL_CHK_A | DF_REF_A, // 1E MONITOR_EXIT vAA DF_UA | DF_NULL_CHK_A | DF_REF_A, // 1F CHK_CAST vAA, type@BBBB DF_UA | DF_REF_A | DF_CHK_CAST | DF_UMS, // 20 INSTANCE_OF vA, vB, type@CCCC DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS, // 21 ARRAY_LENGTH vA, vB DF_DA | DF_UB | DF_NULL_CHK_B | DF_CORE_A | DF_REF_B, // 22 NEW_INSTANCE vAA, type@BBBB DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS, // 23 NEW_ARRAY vA, vB, type@CCCC DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS, // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS, // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS, // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB DF_UA | DF_REF_A | DF_UMS, // 27 THROW vAA DF_UA | DF_REF_A | DF_UMS, // 28 GOTO DF_NOP, // 29 GOTO_16 DF_NOP, // 2A GOTO_32 DF_NOP, // 2B PACKED_SWITCH vAA, +BBBBBBBB DF_UA | DF_CORE_A, // 2C SPARSE_SWITCH vAA, +BBBBBBBB DF_UA | DF_CORE_A, // 2D CMPL_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A, // 2E CMPG_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A, // 2F CMPL_DOUBLE vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A, // 30 CMPG_DOUBLE vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A, // 31 CMP_LONG vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 32 IF_EQ vA, vB, +CCCC DF_UA | DF_UB | DF_SAME_TYPE_AB, // 33 IF_NE vA, vB, +CCCC DF_UA | DF_UB | DF_SAME_TYPE_AB, // 34 IF_LT vA, vB, +CCCC DF_UA | DF_UB | DF_SAME_TYPE_AB, // 35 IF_GE vA, vB, +CCCC DF_UA | DF_UB | DF_SAME_TYPE_AB, // 36 IF_GT vA, vB, +CCCC DF_UA | DF_UB | DF_SAME_TYPE_AB, // 37 IF_LE vA, vB, +CCCC DF_UA | DF_UB | DF_SAME_TYPE_AB, // 38 IF_EQZ vAA, +BBBB DF_UA, // 39 IF_NEZ vAA, +BBBB DF_UA, // 3A IF_LTZ vAA, +BBBB DF_UA, // 3B IF_GEZ vAA, +BBBB DF_UA, // 3C IF_GTZ vAA, +BBBB DF_UA, // 3D IF_LEZ vAA, +BBBB DF_UA, // 3E UNUSED_3E DF_NOP, // 3F UNUSED_3F DF_NOP, // 40 UNUSED_40 DF_NOP, // 41 UNUSED_41 DF_NOP, // 42 UNUSED_42 DF_NOP, // 43 UNUSED_43 DF_NOP, // 44 AGET vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 45 AGET_WIDE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 46 AGET_OBJECT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN, // 47 AGET_BOOLEAN vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 48 AGET_BYTE vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 49 AGET_CHAR vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 4A AGET_SHORT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 4B APUT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 4C APUT_WIDE vAA, vBB, vCC DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 4D APUT_OBJECT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN, // 4E APUT_BOOLEAN vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 4F APUT_BYTE vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 50 APUT_CHAR vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 51 APUT_SHORT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 52 IGET vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 53 IGET_WIDE vA, vB, field@CCCC DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 54 IGET_OBJECT vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, // 55 IGET_BOOLEAN vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 56 IGET_BYTE vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 57 IGET_CHAR vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 58 IGET_SHORT vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 59 IPUT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 5A IPUT_WIDE vA, vB, field@CCCC DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 5B IPUT_OBJECT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, // 5C IPUT_BOOLEAN vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 5D IPUT_BYTE vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 5E IPUT_CHAR vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 5F IPUT_SHORT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // 60 SGET vAA, field@BBBB DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS, // 61 SGET_WIDE vAA, field@BBBB DF_DA | DF_A_WIDE | DF_SFIELD | DF_CLINIT | DF_UMS, // 62 SGET_OBJECT vAA, field@BBBB DF_DA | DF_REF_A | DF_SFIELD | DF_CLINIT | DF_UMS, // 63 SGET_BOOLEAN vAA, field@BBBB DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS, // 64 SGET_BYTE vAA, field@BBBB DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS, // 65 SGET_CHAR vAA, field@BBBB DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS, // 66 SGET_SHORT vAA, field@BBBB DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS, // 67 SPUT vAA, field@BBBB DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS, // 68 SPUT_WIDE vAA, field@BBBB DF_UA | DF_A_WIDE | DF_SFIELD | DF_CLINIT | DF_UMS, // 69 SPUT_OBJECT vAA, field@BBBB DF_UA | DF_REF_A | DF_SFIELD | DF_CLINIT | DF_UMS, // 6A SPUT_BOOLEAN vAA, field@BBBB DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS, // 6B SPUT_BYTE vAA, field@BBBB DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS, // 6C SPUT_CHAR vAA, field@BBBB DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS, // 6D SPUT_SHORT vAA, field@BBBB DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS, // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 6F INVOKE_SUPER {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 71 INVOKE_STATIC {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_CLINIT | DF_UMS, // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 73 RETURN_VOID_NO_BARRIER DF_NOP, // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_CLINIT | DF_UMS, // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 79 UNUSED_79 DF_NOP, // 7A UNUSED_7A DF_NOP, // 7B NEG_INT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 7C NOT_INT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 7D NEG_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 7E NOT_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 7F NEG_FLOAT vA, vB DF_DA | DF_UB | DF_FP_A | DF_FP_B, // 80 NEG_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 81 INT_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B, // 82 INT_TO_FLOAT vA, vB DF_DA | DF_UB | DF_FP_A | DF_CORE_B, // 83 INT_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B, // 84 LONG_TO_INT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 85 LONG_TO_FLOAT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B, // 86 LONG_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B, // 87 FLOAT_TO_INT vA, vB DF_DA | DF_UB | DF_FP_B | DF_CORE_A, // 88 FLOAT_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A, // 89 FLOAT_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B, // 8A DOUBLE_TO_INT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A, // 8B DOUBLE_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A, // 8C DOUBLE_TO_FLOAT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 8D INT_TO_BYTE vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 8E INT_TO_CHAR vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 8F INT_TO_SHORT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 90 ADD_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 91 SUB_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 92 MUL_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 93 DIV_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 94 REM_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 95 AND_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 96 OR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 97 XOR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 98 SHL_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 99 SHR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9A USHR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9B ADD_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9C SUB_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9D MUL_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9E DIV_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9F REM_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A0 AND_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A1 OR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A2 XOR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A3 SHL_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A4 SHR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A5 USHR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A6 ADD_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A7 SUB_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A8 MUL_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A9 DIV_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // AA REM_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // AB ADD_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AC SUB_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AD MUL_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AE DIV_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AF REM_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // B0 ADD_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B1 SUB_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B2 MUL_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B3 DIV_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B4 REM_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B5 AND_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B6 OR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B7 XOR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B8 SHL_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B9 SHR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // BA USHR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // BB ADD_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BC SUB_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BD MUL_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BE DIV_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BF REM_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C0 AND_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C1 OR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C2 XOR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C3 SHL_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C4 SHR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C5 USHR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C6 ADD_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C7 SUB_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C8 MUL_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C9 DIV_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // CA REM_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // CB ADD_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CC SUB_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CD MUL_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CE DIV_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CF REM_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // D0 ADD_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D1 RSUB_INT vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D2 MUL_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D3 DIV_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D4 REM_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D5 AND_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D6 OR_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D7 XOR_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D8 ADD_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D9 RSUB_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DA MUL_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DB DIV_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DC REM_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DD AND_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DE OR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DF XOR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E0 SHL_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E1 SHR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E2 USHR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E3 IGET_QUICK DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // E4 IGET_WIDE_QUICK DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // E5 IGET_OBJECT_QUICK DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, // E6 IPUT_QUICK DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // E7 IPUT_WIDE_QUICK DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // E8 IPUT_OBJECT_QUICK DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, // E9 INVOKE_VIRTUAL_QUICK DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // EA INVOKE_VIRTUAL_RANGE_QUICK DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // EB IPUT_BOOLEAN_QUICK vA, vB, index DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // EC IPUT_BYTE_QUICK vA, vB, index DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // ED IPUT_CHAR_QUICK vA, vB, index DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // EE IPUT_SHORT_QUICK vA, vB, index DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // EF IGET_BOOLEAN_QUICK vA, vB, index DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // F0 IGET_BYTE_QUICK vA, vB, index DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // F1 IGET_CHAR_QUICK vA, vB, index DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // F2 IGET_SHORT_QUICK vA, vB, index DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN, // F3 UNUSED_F3 DF_NOP, // F4 UNUSED_F4 DF_NOP, // F5 UNUSED_F5 DF_NOP, // F6 UNUSED_F6 DF_NOP, // F7 UNUSED_F7 DF_NOP, // F8 UNUSED_F8 DF_NOP, // F9 UNUSED_F9 DF_NOP, // FA UNUSED_FA DF_NOP, // FB UNUSED_FB DF_NOP, // FC UNUSED_FC DF_NOP, // FD UNUSED_FD DF_NOP, // FE UNUSED_FE DF_NOP, // FF UNUSED_FF DF_NOP, // Beginning of extended MIR opcodes // 100 MIR_PHI DF_DA | DF_NULL_TRANSFER_N, // 101 MIR_COPY DF_DA | DF_UB | DF_IS_MOVE, // 102 MIR_FUSED_CMPL_FLOAT DF_UA | DF_UB | DF_FP_A | DF_FP_B, // 103 MIR_FUSED_CMPG_FLOAT DF_UA | DF_UB | DF_FP_A | DF_FP_B, // 104 MIR_FUSED_CMPL_DOUBLE DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 105 MIR_FUSED_CMPG_DOUBLE DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 106 MIR_FUSED_CMP_LONG DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 107 MIR_NOP DF_NOP, // 108 MIR_NULL_CHECK DF_UA | DF_REF_A | DF_NULL_CHK_A | DF_LVN, // 109 MIR_RANGE_CHECK 0, // 10A MIR_DIV_ZERO_CHECK 0, // 10B MIR_CHECK 0, // 10D MIR_SELECT DF_DA | DF_UB, // 10E MirOpConstVector 0, // 10F MirOpMoveVector 0, // 110 MirOpPackedMultiply 0, // 111 MirOpPackedAddition 0, // 112 MirOpPackedSubtract 0, // 113 MirOpPackedShiftLeft 0, // 114 MirOpPackedSignedShiftRight 0, // 115 MirOpPackedUnsignedShiftRight 0, // 116 MirOpPackedAnd 0, // 117 MirOpPackedOr 0, // 118 MirOpPackedXor 0, // 119 MirOpPackedAddReduce DF_FORMAT_EXTENDED, // 11A MirOpPackedReduce DF_FORMAT_EXTENDED, // 11B MirOpPackedSet DF_FORMAT_EXTENDED, // 11C MirOpReserveVectorRegisters 0, // 11D MirOpReturnVectorRegisters 0, // 11E MirOpMemBarrier 0, // 11F MirOpPackedArrayGet DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 120 MirOpPackedArrayPut DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN, // 121 MirOpMaddInt DF_FORMAT_EXTENDED, // 122 MirOpMsubInt DF_FORMAT_EXTENDED, // 123 MirOpMaddLong DF_FORMAT_EXTENDED, // 124 MirOpMsubLong DF_FORMAT_EXTENDED, };
// Allocate a new MIR. MIR* MIRGraph::NewMIR() { MIR* mir = new (arena_) MIR(); return mir; }
我們都知道,Java中的代碼是由一個個代碼塊所組成的。
enum BBType { kNullBlock, kEntryBlock, kDalvikByteCode, kExitBlock, kExceptionHandling, kDead, };
enum BlockListType { kNotUsed = 0, kCatch, kPackedSwitch, kSparseSwitch, };
// Dataflow attributes of a basic block. struct BasicBlockDataFlow { ArenaBitVector* use_v; ArenaBitVector* def_v; ArenaBitVector* live_in_v; int32_t* vreg_to_ssa_map_exit; };
BasicBlock* MIRGraph::CreateNewBB(BBType block_type) { BasicBlockId id = static_cast(block_list_.size()); BasicBlock* res = NewMemBB(block_type, id); block_list_.push_back(res); return res; }
主要是預留出相應的空間來。
另外還要到block_id_map_中備個案。
// Allocate a new basic block. BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) { BasicBlock* bb = new (arena_) BasicBlock(block_id, block_type, arena_); // TUNING: better estimate of the exit block predecessors? bb->predecessors.reserve((block_type == kExitBlock) ? 2048 : 2); block_id_map_.Put(block_id, block_id); return bb; }
Dex文件中的代碼項,用CodeItem結構體來表示:
struct CodeItem { uint16_t registers_size_; uint16_t ins_size_; uint16_t outs_size_; uint16_t tries_size_; uint32_t debug_info_off_; // file offset to debug info stream uint32_t insns_size_in_code_units_; // size of the insns array, in 2 byte code units uint16_t insns_[1]; private: DISALLOW_COPY_AND_ASSIGN(CodeItem); };
調用方法的類型有以下幾種:
* kStatic:調用靜態方法
* kDirect:調用普通方法
* kVirtual:調用虛方法
* kSuper:調用父類方法
* kInterface:調用實現的接口中的方法
enum InvokeType { kStatic, // <> kDirect, // < > kVirtual, // < > kSuper, // < > kInterface, // < > kMaxInvokeType = kInterface };
最後,我們上一張MIRGraph的大圖. 後面幾節我們主要都是跟它打交道了
一、前言自從去年中微信添加搶紅包的功能,微信的電商之旅算是正式開始正式火爆起來。但是作為Android開發者來說,我們在搶紅包的同時意識到了很多問題,就是手動去搶紅包的速
Handlerhandler是什麼 ? 是android給我們提供用來更新UI的一套機制, 也是一套消息處理的機制, 我們可以發送消息, 也可以通過它處理消息為什麼要用h
本周的主要內容介紹Gradle,NDK,管理依賴和Git等一、GradleGradle是一個基於Apache Ant和Apache Maven概念的項目自動化建構工具。它
最近在寫一個應用,想把設置頁面和應用頁面放在一起,這樣就能實現用戶可以實時看到自己的設置對UI的影響,從而更方便的設置用戶喜歡的界面。想了一段時間,發現用slidingD