編輯:關於Android編程
XML配置文件中
AlphaAnimation(float fromAlpha, float toAlpha) //第一個參數fromAlpha為 動畫開始時候透明度 //第二個參數toAlpha為 動畫結束時候透明度
ScaleAnimation(float fromX, float toX, float fromY, float toY, int pivotXType, float pivotXValue, int pivotYType, float pivotYValue) //第一個參數fromX為動畫起始時 X坐標上的伸縮尺寸 //第二個參數toX為動畫結束時 X坐標上的伸縮尺寸 //第三個參數fromY為動畫起始時Y坐標上的伸縮尺寸 //第四個參數toY為動畫結束時Y坐標上的伸縮尺寸 /*說明: 以上四種屬性值 0.0表示收縮到沒有 1.0表示正常無伸縮 值小於1.0表示收縮 值大於1.0表示放大 */ //第五個參數pivotXType為動畫在X軸相對於物件位置類型 //第六個參數pivotXValue為動畫相對於物件的X坐標的開始位置 //第七個參數pivotXType為動畫在Y軸相對於物件位置類型 //第八個參數pivotYValue為動畫相對於物件的Y坐標的開始位置 myAnimation_Scale = new ScaleAnimation(0.0f, 1.4f, 0.0f, 1.4f, Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF, 0.5f);
TranslateAnimation(float fromXDelta, float toXDelta, float fromYDelta, float toYDelta) //第一個參數fromXDelta為動畫起始時 X坐標上的位置 //第二個參數toXDelta為動畫結束時 X坐標上的位置 //第三個參數fromYDelta為動畫起始時Y坐標上的位置 //第四個參數toYDelta為動畫結束時Y坐標上的位置 myAnimation_Translate = new TranslateAnimation(10f, 100f, 10f, 100f);
RotateAnimation(float fromDegrees, float toDegrees, int pivotXType, float pivotXValue, int pivotYType, float pivotYValue) //第一個參數fromDegrees為動畫起始時的旋轉角度 //第二個參數toDegrees為動畫旋轉到的角度 //第三個參數pivotXType為動畫在X軸相對於物件位置類型 //第四個參數pivotXValue為動畫相對於物件的X坐標的開始位置 //第五個參數pivotXType為動畫在Y軸相對於物件位置類型 //第六個參數pivotYValue為動畫相對於物件的Y坐標的開始位置 myAnimation_Rotate = new RotateAnimation(0.0f, +350.0f, Animation.RELATIVE_TO_SELF,0.5f,Animation.RELATIVE_TO_SELF, 0.5f);
View Animation(Tween Animation):補間動畫,給出兩個關鍵幀,通過一些算法將給定屬性值在給定的時間內在兩個關鍵幀間漸變。
View animation只能應用於View對象,而且只支持一部分屬性,如支持縮放旋轉而不支持背景顏色的改變。
而且對於View animation,它只是改變了View對象繪制的位置,而沒有改變View對象本身,比如,你有一個Button,坐標(100,100),Width:200,Height:50,而你有一個動畫使其變為Width:100,Height:100,你會發現動畫過程中觸發按鈕點擊的區域仍是(100,100)-(300,150)。
View Animation就是一系列View形狀的變換,如大小的縮放,透明度的改變,位置的改變,動畫的定義既可以用代碼定義也可以用XML定義,當然,建議用XML定義。
可以給一個View同時設置多個動畫,比如從透明至不透明的淡入效果,與從小到大的放大效果,這些動畫可以同時進行,也可以在一個完成之後開始另一個。
用XML定義的動畫放在/res/anim/文件夾內,XML文件的根元素可以為,
可以通過設置interpolator屬性改變動畫漸變的方式,如AccelerateInterpolator,開始時慢,然後逐漸加快。默認為AccelerateDecelerateInterpolator。
定義好動畫的XML文件後,可以通過類似下面的代碼對指定View應用動畫。
ImageView spaceshipImage = (ImageView)findViewById(R.id.spaceshipImage); Animation hyperspaceJumpAnimation=AnimationUtils.loadAnimation(this, R.anim.hyperspace_jump; spaceshipImage.startAnimation(hyperspaceJumpAnimation);
Drawable Animation(Frame Animation):幀動畫,就像GIF圖片,通過一系列Drawable依次顯示來模擬動畫的效果。在XML中的定義方式如下:
protected void onCreate(Bundle savedInstanceState) { // TODO Auto-generated method stub super.onCreate(savedInstanceState); setContentView(R.layout.main); imageView = (ImageView) findViewById(R.id.imageView1); imageView.setBackgroundResource(R.drawable.drawable_anim); anim = (AnimationDrawable) imageView.getBackground(); } public boolean onTouchEvent(MotionEvent event) { if (event.getAction() == MotionEvent.ACTION_DOWN) { anim.stop(); anim.start(); return true; } return super.onTouchEvent(event); }注意:
屬性動畫,這個是在Android 3.0中才引進的,它更改的是對象的實際屬性,在View Animation(Tween Animation)中,其改變的是View的繪制效果,真正的View的屬性保持不變,比如無論你在對話中如何縮放Button的大小,Button的有效點擊區域還是沒有應用動畫時的區域,其位置與大小都不變。而在Property Animation中,改變的是對象的實際屬性,如Button的縮放,Button的位置與大小屬性值都改變了。而且Property Animation不止可以應用於View,還可以應用於任何對象。Property Animation只是表示一個值在一段時間內的改變,當值改變時要做什麼事情完全是你自己決定的。
在Property Animation中,可以對動畫應用以下屬性:
首先要了解為什麼需要插值器,因為在補間動畫中,我們一般只定義關鍵幀(首幀或尾幀),然後由系統自動生成中間幀,生成中間幀的這個過程可以成為“插值”。插值器定義了動畫變化的速率,提供不同的函數定義變化值相對於時間的變化規則,可以定義各種各樣的非線性變化函數,比如加速、減速等。下面是幾種常見的插值器:
如果只簡單地引用這些插值器還不能滿足需要的話,我們要考慮一下個性化插值器。我們可以創建一個插值器資源修改插值器的屬性,比如修改AnticipateInterpolator的加速速率,調整CycleInterpolator的循環次數等。為了完成這種需求,我們需要創建XML資源文件,然後將其放於/res/anim下,然後再動畫元素中引用即可。我們先來看一下幾種常見的插值器可調整的屬性:
無 android:factor 浮點值,加速速率,默認為1 android:tension 浮點值,起始點後退的張力、拉力數,默認為2 android:tension 同上 android:extraTension 浮點值,拉力的倍數,默認為1.5(2 * 1.5)無 android:cycles 整數值,循環的個數,默認為1 android:factor 浮點值,減速的速率,默認為1 無 浮點值,超出終點後的張力、拉力,默認為2
下面我們就拿最後一個插值器來舉例:
上面的代碼中,我們把張力改為7.0,然後將此文件命名為my_overshoot_interpolator.xml,放置於/res/anim下,我們就可以引用到自定義的插值器了:
/** * An interpolator where the rate of change starts and ends slowly but * accelerates through the middle. * */ public class AccelerateDecelerateInterpolator implements Interpolator { public AccelerateDecelerateInterpolator() { } @SuppressWarnings({"UnusedDeclaration"}) public AccelerateDecelerateInterpolator(Context context, AttributeSet attrs) { } public float getInterpolation(float input) { return (float)(Math.cos((input + 1) * Math.PI) / 2.0f) + 0.5f; } }
<喎?/kf/ware/vc/" target="_blank" class="keylink">vcD4KPGgyPgpBY2NlbGVyYXRlSW50ZXJwb2xhdG9yPC9oMj4KPHByZSBjbGFzcz0="brush:java;">/**
* An interpolator where the rate of change starts out slowly and
* and then accelerates.
*
*/
public class AccelerateInterpolator implements Interpolator {
private final float mFactor;
private final double mDoubleFactor;
public AccelerateInterpolator() {
mFactor = 1.0f;
mDoubleFactor = 2.0;
}
/**
* Constructor
*
* @param factor Degree to which the animation should be eased. Seting
* factor to 1.0f produces a y=x^2 parabola. Increasing factor above
* 1.0f exaggerates the ease-in effect (i.e., it starts even
* slower and ends evens faster)
*/
public AccelerateInterpolator(float factor) {
mFactor = factor;
mDoubleFactor = 2 * mFactor;
}
public AccelerateInterpolator(Context context, AttributeSet attrs) {
TypedArray a =
context.obtainStyledAttributes(attrs, com.android.internal.R.styleable.AccelerateInterpolator);
mFactor = a.getFloat(com.android.internal.R.styleable.AccelerateInterpolator_factor, 1.0f);
mDoubleFactor = 2 * mFactor;
a.recycle();
}
public float getInterpolation(float input) {
if (mFactor == 1.0f) {
return input * input;
} else {
return (float)Math.pow(input, mDoubleFactor);
}
}
}
/** * An interpolator where the change starts backward then flings forward. */ public class AnticipateInterpolator implements Interpolator { private final float mTension; public AnticipateInterpolator() { mTension = 2.0f; } /** * @param tension Amount of anticipation. When tension equals 0.0f, there is * no anticipation and the interpolator becomes a simple * acceleration interpolator. */ public AnticipateInterpolator(float tension) { mTension = tension; } public AnticipateInterpolator(Context context, AttributeSet attrs) { TypedArray a = context.obtainStyledAttributes(attrs, com.android.internal.R.styleable.AnticipateInterpolator); mTension = a.getFloat(com.android.internal.R.styleable.AnticipateInterpolator_tension, 2.0f); a.recycle(); } public float getInterpolation(float t) { // a(t) = t * t * ((tension + 1) * t - tension) return t * t * ((mTension + 1) * t - mTension); } }
/** * An interpolator where the change starts backward then flings forward and overshoots * the target value and finally goes back to the final value. */ public class AnticipateOvershootInterpolator implements Interpolator { private final float mTension; public AnticipateOvershootInterpolator() { mTension = 2.0f * 1.5f; } /** * @param tension Amount of anticipation/overshoot. When tension equals 0.0f, * there is no anticipation/overshoot and the interpolator becomes * a simple acceleration/deceleration interpolator. */ public AnticipateOvershootInterpolator(float tension) { mTension = tension * 1.5f; } /** * @param tension Amount of anticipation/overshoot. When tension equals 0.0f, * there is no anticipation/overshoot and the interpolator becomes * a simple acceleration/deceleration interpolator. * @param extraTension Amount by which to multiply the tension. For instance, * to get the same overshoot as an OvershootInterpolator with * a tension of 2.0f, you would use an extraTension of 1.5f. */ public AnticipateOvershootInterpolator(float tension, float extraTension) { mTension = tension * extraTension; } public AnticipateOvershootInterpolator(Context context, AttributeSet attrs) { TypedArray a = context.obtainStyledAttributes(attrs, AnticipateOvershootInterpolator); mTension = a.getFloat(AnticipateOvershootInterpolator_tension, 2.0f) * a.getFloat(AnticipateOvershootInterpolator_extraTension, 1.5f); a.recycle(); } private static float a(float t, float s) { return t * t * ((s + 1) * t - s); } private static float o(float t, float s) { return t * t * ((s + 1) * t + s); } public float getInterpolation(float t) { // a(t, s) = t * t * ((s + 1) * t - s) // o(t, s) = t * t * ((s + 1) * t + s) // f(t) = 0.5 * a(t * 2, tension * extraTension), when t < 0.5 // f(t) = 0.5 * (o(t * 2 - 2, tension * extraTension) + 2), when t <= 1.0 if (t < 0.5f) return 0.5f * a(t * 2.0f, mTension); else return 0.5f * (o(t * 2.0f - 2.0f, mTension) + 2.0f); } }
/** * An interpolator where the change bounces at the end. */ public class BounceInterpolator implements Interpolator { public BounceInterpolator() { } @SuppressWarnings({"UnusedDeclaration"}) public BounceInterpolator(Context context, AttributeSet attrs) { } private static float bounce(float t) { return t * t * 8.0f; } public float getInterpolation(float t) { // _b(t) = t * t * 8 // bs(t) = _b(t) for t < 0.3535 // bs(t) = _b(t - 0.54719) + 0.7 for t < 0.7408 // bs(t) = _b(t - 0.8526) + 0.9 for t < 0.9644 // bs(t) = _b(t - 1.0435) + 0.95 for t <= 1.0 // b(t) = bs(t * 1.1226) t *= 1.1226f; if (t < 0.3535f) return bounce(t); else if (t < 0.7408f) return bounce(t - 0.54719f) + 0.7f; else if (t < 0.9644f) return bounce(t - 0.8526f) + 0.9f; else return bounce(t - 1.0435f) + 0.95f; } }
/** * Repeats the animation for a specified number of cycles. The * rate of change follows a sinusoidal pattern. * */ public class CycleInterpolator implements Interpolator { public CycleInterpolator(float cycles) { mCycles = cycles; } public CycleInterpolator(Context context, AttributeSet attrs) { TypedArray a = context.obtainStyledAttributes(attrs, com.android.internal.R.styleable.CycleInterpolator); mCycles = a.getFloat(com.android.internal.R.styleable.CycleInterpolator_cycles, 1.0f); a.recycle(); } public float getInterpolation(float input) { return (float)(Math.sin(2 * mCycles * Math.PI * input)); } private float mCycles; }
參數為2時的曲線:
/** * An interpolator where the rate of change starts out quickly and * and then decelerates. * */ public class DecelerateInterpolator implements Interpolator { public DecelerateInterpolator() { } /** * Constructor * * @param factor Degree to which the animation should be eased. Setting factor to 1.0f produces * an upside-down y=x^2 parabola. Increasing factor above 1.0f makes exaggerates the * ease-out effect (i.e., it starts even faster and ends evens slower) */ public DecelerateInterpolator(float factor) { mFactor = factor; } public DecelerateInterpolator(Context context, AttributeSet attrs) { TypedArray a = context.obtainStyledAttributes(attrs, com.android.internal.R.styleable.DecelerateInterpolator); mFactor = a.getFloat(com.android.internal.R.styleable.DecelerateInterpolator_factor, 1.0f); a.recycle(); } public float getInterpolation(float input) { float result; if (mFactor == 1.0f) { result = (float)(1.0f - (1.0f - input) * (1.0f - input)); } else { result = (float)(1.0f - Math.pow((1.0f - input), 2 * mFactor)); } return result; } private float mFactor = 1.0f; }
/** * An interpolator where the rate of change is constant * */ public class LinearInterpolator implements Interpolator { public LinearInterpolator() { } public LinearInterpolator(Context context, AttributeSet attrs) { } public float getInterpolation(float input) { return input; } }
/** * An interpolator where the change flings forward and overshoots the last value * then comes back. */ public class OvershootInterpolator implements Interpolator { private final float mTension; public OvershootInterpolator() { mTension = 2.0f; } /** * @param tension Amount of overshoot. When tension equals 0.0f, there is * no overshoot and the interpolator becomes a simple * deceleration interpolator. */ public OvershootInterpolator(float tension) { mTension = tension; } public OvershootInterpolator(Context context, AttributeSet attrs) { TypedArray a = context.obtainStyledAttributes(attrs, com.android.internal.R.styleable.OvershootInterpolator); mTension = a.getFloat(com.android.internal.R.styleable.OvershootInterpolator_tension, 2.0f); a.recycle(); } public float getInterpolation(float t) { // _o(t) = t * t * ((tension + 1) * t + tension) // o(t) = _o(t - 1) + 1 t -= 1.0f; return t * t * ((mTension + 1) * t + mTension) + 1.0f; } }
Volley簡介我們平時在開發Android應用的時候不可避免地都需要用到網絡技術,而多數情況下應用程序都會使用HTTP協議來發送和接收網絡數據。Androi
背景相信大家對Android Studio已經不陌生了,Android Studio是Google於2013 I/O大會針對Android開發推出的新的開發工具,目前很多
雖然只是模仿,但我覺得這是學習自定義view的必經之路,所以還是把我所學到的東西拿出來與大家一起分享。先貼出一張progressBar的gif圖,其中有水平的進度條,和圓
什麼是AIDLaidl是 Android Interface definition language的縮寫,也就是安卓接口定義語言為什麼要有AIDLAIDL允許你定義客戶