編輯:關於Android編程
經過前三篇文章的學習,Volley的用法我們已經掌握的差不多了,但是對於Volley的工作原理,恐怕有很多朋友還不是很清楚。因此,本篇文章中我們就來一起閱讀一下Volley的源碼,將它的工作流程整體地梳理一遍。同時,這也是Volley系列的最後一篇文章了。
其實,Volley的官方文檔中本身就附有了一張Volley的工作流程圖,如下圖所示。
多數朋友突然看到一張這樣的圖,應該會和我一樣,感覺一頭霧水吧?沒錯,目前我們對Volley背後的工作原理還沒有一個概念性的理解,直接就來看這張圖自然會有些吃力。不過沒關系,下面我們就去分析一下Volley的源碼,之後再重新來看這張圖就會好理解多了。
說起分析源碼,那麼應該從哪兒開始看起呢?這就要回顧一下Volley的用法了,還記得嗎,使用Volley的第一步,首先要調用Volley.newRequestQueue(context)方法來獲取一個RequestQueue對象,那麼我們自然要從這個方法開始看起了,代碼如下所示:
public static RequestQueue newRequestQueue(Context context) { return newRequestQueue(context, null); }這個方法僅僅只有一行代碼,只是調用了newRequestQueue()的方法重載,並給第二個參數傳入null。那我們看下帶有兩個參數的newRequestQueue()方法中的代碼,如下所示:
public static RequestQueue newRequestQueue(Context context, HttpStack stack) { File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR); String userAgent = volley/0; try { String packageName = context.getPackageName(); PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0); userAgent = packageName + / + info.versionCode; } catch (NameNotFoundException e) { } if (stack == null) { if (Build.VERSION.SDK_INT >= 9) { stack = new HurlStack(); } else { stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent)); } } Network network = new BasicNetwork(stack); RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network); queue.start(); return queue; }可以看到,這裡在第10行判斷如果stack是等於null的,則去創建一個HttpStack對象,這裡會判斷如果手機系統版本號是大於9的,則創建一個HurlStack的實例,否則就創建一個HttpClientStack的實例。實際上HurlStack的內部就是使用HttpURLConnection進行網絡通訊的,而HttpClientStack的內部則是使用HttpClient進行網絡通訊的,這裡為什麼這樣選擇呢?可以參考我之前翻譯的一篇文章Android訪問網絡,使用HttpURLConnection還是HttpClient?
創建好了HttpStack之後,接下來又創建了一個Network對象,它是用於根據傳入的HttpStack對象來處理網絡請求的,緊接著new出一個RequestQueue對象,並調用它的start()方法進行啟動,然後將RequestQueue返回,這樣newRequestQueue()的方法就執行結束了。
那麼RequestQueue的start()方法內部到底執行了什麼東西呢?我們跟進去瞧一瞧:
public void start() { stop(); // Make sure any currently running dispatchers are stopped. // Create the cache dispatcher and start it. mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery); mCacheDispatcher.start(); // Create network dispatchers (and corresponding threads) up to the pool size. for (int i = 0; i < mDispatchers.length; i++) { NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork, mCache, mDelivery); mDispatchers[i] = networkDispatcher; networkDispatcher.start(); } }這裡先是創建了一個CacheDispatcher的實例,然後調用了它的start()方法,接著在一個for循環裡去創建NetworkDispatcher的實例,並分別調用它們的start()方法。這裡的CacheDispatcher和NetworkDispatcher都是繼承自Thread的,而默認情況下for循環會執行四次,也就是說當調用了Volley.newRequestQueue(context)之後,就會有五個線程一直在後台運行,不斷等待網絡請求的到來,其中CacheDispatcher是緩存線程,NetworkDispatcher是網絡請求線程。
得到了RequestQueue之後,我們只需要構建出相應的Request,然後調用RequestQueue的add()方法將Request傳入就可以完成網絡請求操作了,那麼不用說,add()方法的內部肯定有著非常復雜的邏輯,我們來一起看一下:
public可以看到,在第11行的時候會判斷當前的請求是否可以緩存,如果不能緩存則在第12行直接將這條請求加入網絡請求隊列,可以緩存的話則在第33行將這條請求加入緩存隊列。在默認情況下,每條請求都是可以緩存的,當然我們也可以調用Request的setShouldCache(false)方法來改變這一默認行為。Request add(Request request) { // Tag the request as belonging to this queue and add it to the set of current requests. request.setRequestQueue(this); synchronized (mCurrentRequests) { mCurrentRequests.add(request); } // Process requests in the order they are added. request.setSequence(getSequenceNumber()); request.addMarker(add-to-queue); // If the request is uncacheable, skip the cache queue and go straight to the network. if (!request.shouldCache()) { mNetworkQueue.add(request); return request; } // Insert request into stage if there's already a request with the same cache key in flight. synchronized (mWaitingRequests) { String cacheKey = request.getCacheKey(); if (mWaitingRequests.containsKey(cacheKey)) { // There is already a request in flight. Queue up. Queue > stagedRequests = mWaitingRequests.get(cacheKey); if (stagedRequests == null) { stagedRequests = new LinkedList >(); } stagedRequests.add(request); mWaitingRequests.put(cacheKey, stagedRequests); if (VolleyLog.DEBUG) { VolleyLog.v(Request for cacheKey=%s is in flight, putting on hold., cacheKey); } } else { // Insert 'null' queue for this cacheKey, indicating there is now a request in // flight. mWaitingRequests.put(cacheKey, null); mCacheQueue.add(request); } return request; } }
OK,那麼既然默認每條請求都是可以緩存的,自然就被添加到了緩存隊列中,於是一直在後台等待的緩存線程就要開始運行起來了,我們看下CacheDispatcher中的run()方法,代碼如下所示:
public class CacheDispatcher extends Thread { …… @Override public void run() { if (DEBUG) VolleyLog.v(start new dispatcher); Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); // Make a blocking call to initialize the cache. mCache.initialize(); while (true) { try { // Get a request from the cache triage queue, blocking until // at least one is available. final Request request = mCacheQueue.take(); request.addMarker(cache-queue-take); // If the request has been canceled, don't bother dispatching it. if (request.isCanceled()) { request.finish(cache-discard-canceled); continue; } // Attempt to retrieve this item from cache. Cache.Entry entry = mCache.get(request.getCacheKey()); if (entry == null) { request.addMarker(cache-miss); // Cache miss; send off to the network dispatcher. mNetworkQueue.put(request); continue; } // If it is completely expired, just send it to the network. if (entry.isExpired()) { request.addMarker(cache-hit-expired); request.setCacheEntry(entry); mNetworkQueue.put(request); continue; } // We have a cache hit; parse its data for delivery back to the request. request.addMarker(cache-hit); Response response = request.parseNetworkResponse( new NetworkResponse(entry.data, entry.responseHeaders)); request.addMarker(cache-hit-parsed); if (!entry.refreshNeeded()) { // Completely unexpired cache hit. Just deliver the response. mDelivery.postResponse(request, response); } else { // Soft-expired cache hit. We can deliver the cached response, // but we need to also send the request to the network for // refreshing. request.addMarker(cache-hit-refresh-needed); request.setCacheEntry(entry); // Mark the response as intermediate. response.intermediate = true; // Post the intermediate response back to the user and have // the delivery then forward the request along to the network. mDelivery.postResponse(request, response, new Runnable() { @Override public void run() { try { mNetworkQueue.put(request); } catch (InterruptedException e) { // Not much we can do about this. } } }); } } catch (InterruptedException e) { // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } } } }代碼有點長,我們只挑重點看。首先在11行可以看到一個while(true)循環,說明緩存線程始終是在運行的,接著在第23行會嘗試從緩存當中取出響應結果,如何為空的話則把這條請求加入到網絡請求隊列中,如果不為空的話再判斷該緩存是否已過期,如果已經過期了則同樣把這條請求加入到網絡請求隊列中,否則就認為不需要重發網絡請求,直接使用緩存中的數據即可。之後會在第39行調用Request的parseNetworkResponse()方法來對數據進行解析,再往後就是將解析出來的數據進行回調了,這部分代碼我們先跳過,因為它的邏輯和NetworkDispatcher後半部分的邏輯是基本相同的,那麼我們等下合並在一起看就好了,先來看一下NetworkDispatcher中是怎麼處理網絡請求隊列的,代碼如下所示:
public class NetworkDispatcher extends Thread { …… @Override public void run() { Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); Request request; while (true) { try { // Take a request from the queue. request = mQueue.take(); } catch (InterruptedException e) { // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } try { request.addMarker(network-queue-take); // If the request was cancelled already, do not perform the // network request. if (request.isCanceled()) { request.finish(network-discard-cancelled); continue; } addTrafficStatsTag(request); // Perform the network request. NetworkResponse networkResponse = mNetwork.performRequest(request); request.addMarker(network-http-complete); // If the server returned 304 AND we delivered a response already, // we're done -- don't deliver a second identical response. if (networkResponse.notModified && request.hasHadResponseDelivered()) { request.finish(not-modified); continue; } // Parse the response here on the worker thread. Response response = request.parseNetworkResponse(networkResponse); request.addMarker(network-parse-complete); // Write to cache if applicable. // TODO: Only update cache metadata instead of entire record for 304s. if (request.shouldCache() && response.cacheEntry != null) { mCache.put(request.getCacheKey(), response.cacheEntry); request.addMarker(network-cache-written); } // Post the response back. request.markDelivered(); mDelivery.postResponse(request, response); } catch (VolleyError volleyError) { parseAndDeliverNetworkError(request, volleyError); } catch (Exception e) { VolleyLog.e(e, Unhandled exception %s, e.toString()); mDelivery.postError(request, new VolleyError(e)); } } } }同樣地,在第7行我們看到了類似的while(true)循環,說明網絡請求線程也是在不斷運行的。在第28行的時候會調用Network的performRequest()方法來去發送網絡請求,而Network是一個接口,這裡具體的實現是BasicNetwork,我們來看下它的performRequest()方法,如下所示:
public class BasicNetwork implements Network { …… @Override public NetworkResponse performRequest(Request request) throws VolleyError { long requestStart = SystemClock.elapsedRealtime(); while (true) { HttpResponse httpResponse = null; byte[] responseContents = null; MapresponseHeaders = new HashMap (); try { // Gather headers. Map headers = new HashMap (); addCacheHeaders(headers, request.getCacheEntry()); httpResponse = mHttpStack.performRequest(request, headers); StatusLine statusLine = httpResponse.getStatusLine(); int statusCode = statusLine.getStatusCode(); responseHeaders = convertHeaders(httpResponse.getAllHeaders()); // Handle cache validation. if (statusCode == HttpStatus.SC_NOT_MODIFIED) { return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, request.getCacheEntry() == null ? null : request.getCacheEntry().data, responseHeaders, true); } // Some responses such as 204s do not have content. We must check. if (httpResponse.getEntity() != null) { responseContents = entityToBytes(httpResponse.getEntity()); } else { // Add 0 byte response as a way of honestly representing a // no-content request. responseContents = new byte[0]; } // if the request is slow, log it. long requestLifetime = SystemClock.elapsedRealtime() - requestStart; logSlowRequests(requestLifetime, request, responseContents, statusLine); if (statusCode < 200 || statusCode > 299) { throw new IOException(); } return new NetworkResponse(statusCode, responseContents, responseHeaders, false); } catch (Exception e) { …… } } } }
這段方法中大多都是一些網絡請求細節方面的東西,我們並不需要太多關心,需要注意的是在第14行調用了HttpStack的performRequest()方法,這裡的HttpStack就是在一開始調用newRequestQueue()方法是創建的實例,默認情況下如果系統版本號大於9就創建的HurlStack對象,否則創建HttpClientStack對象。前面已經說過,這兩個對象的內部實際就是分別使用HttpURLConnection和HttpClient來發送網絡請求的,我們就不再跟進去閱讀了,之後會將服務器返回的數據組裝成一個NetworkResponse對象進行返回。
在NetworkDispatcher中收到了NetworkResponse這個返回值後又會調用Request的parseNetworkResponse()方法來解析NetworkResponse中的數據,以及將數據寫入到緩存,這個方法的實現是交給Request的子類來完成的,因為不同種類的Request解析的方式也肯定不同。還記得我們在上一篇文章中學習的自定義Request的方式嗎?其中parseNetworkResponse()這個方法就是必須要重寫的。
在解析完了NetworkResponse中的數據之後,又會調用ExecutorDelivery的postResponse()方法來回調解析出的數據,代碼如下所示:
public void postResponse(Request request, Response response, Runnable runnable) { request.markDelivered(); request.addMarker(post-response); mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable)); }其中,在mResponsePoster的execute()方法中傳入了一個ResponseDeliveryRunnable對象,就可以保證該對象中的run()方法就是在主線程當中運行的了,我們看下run()方法中的代碼是什麼樣的:
private class ResponseDeliveryRunnable implements Runnable { private final Request mRequest; private final Response mResponse; private final Runnable mRunnable; public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) { mRequest = request; mResponse = response; mRunnable = runnable; } @SuppressWarnings(unchecked) @Override public void run() { // If this request has canceled, finish it and don't deliver. if (mRequest.isCanceled()) { mRequest.finish(canceled-at-delivery); return; } // Deliver a normal response or error, depending. if (mResponse.isSuccess()) { mRequest.deliverResponse(mResponse.result); } else { mRequest.deliverError(mResponse.error); } // If this is an intermediate response, add a marker, otherwise we're done // and the request can be finished. if (mResponse.intermediate) { mRequest.addMarker(intermediate-response); } else { mRequest.finish(done); } // If we have been provided a post-delivery runnable, run it. if (mRunnable != null) { mRunnable.run(); } } }
代碼雖然不多,但我們並不需要行行閱讀,抓住重點看即可。其中在第22行調用了Request的deliverResponse()方法,有沒有感覺很熟悉?沒錯,這個就是我們在自定義Request時需要重寫的另外一個方法,每一條網絡請求的響應都是回調到這個方法中,最後我們再在這個方法中將響應的數據回調到Response.Listener的onResponse()方法中就可以了。
好了,到這裡我們就把Volley的完整執行流程全部梳理了一遍,你是不是已經感覺已經很清晰了呢?對了,還記得在文章一開始的那張流程圖嗎,剛才還不能理解,現在我們再來重新看下這張圖:
其中藍色部分代表主線程,綠色部分代表緩存線程,橙色部分代表網絡線程。我們在主線程中調用RequestQueue的add()方法來添加一條網絡請求,這條請求會先被加入到緩存隊列當中,如果發現可以找到相應的緩存結果就直接讀取緩存並解析,然後回調給主線程。如果在緩存中沒有找到結果,則將這條請求加入到網絡請求隊列中,然後處理發送HTTP請求,解析響應結果,寫入緩存,並回調主線程。
怎麼樣,是不是感覺現在理解這張圖已經變得輕松簡單了?好了,到此為止我們就把Volley的用法和源碼全部學習完了,相信你已經對Volley非常熟悉並可以將它應用到實際項目當中了,那麼Volley完全解析系列的文章到此結束,感謝大家有耐心看到最後。
Android 解決監聽home鍵的幾種方法前言:以下兩種方法可以完美解決監聽back鍵,home鍵,多任務鍵(最近任務鍵)。一、使用注冊廣播監聽home鍵、多任務鍵演示
又是一個不眠夜 問題來了,我們寫個android項目部分代碼想生成jar包,並且將jar包做混淆,不被別人切! 首先講要代碼生成jar包,這個就不多說了。然後找到找到SD
APP的測試重點小部分在APP本身,大部分還是在網絡通信上(單機版除外)。所以在安卓APP測試過程中,網絡抓包非常重要,一般來說,app開發會采用HTTP協議、Webso
本文主要內容就是用marix加上漸變色實現圖片倒影的效果,步驟如下: 1. 獲取需要倒影效果的圖片,這裡取原圖片的一半 2. 添加顏色漸變到倒影圖片上