編輯:關於Android編程
Valera loves segments. He has recently come up with one interesting problem.
The Ox axis of coordinates has n segments, the i-th segment starts in position li and ends in position ri (we will mark it as [li,?ri]). Your task is to process m queries, each consists of number cnti and a set of cnti coordinates of points located on the Ox axis. The answer to the query is the number of segments, such that each of them contains at least one point from the query. Segment [l,?r] contains point q, if l?≤?q?≤?r.
Valera found the solution of this problem too difficult. So he asked you to help him. Help Valera.
InputThe first line contains two integers n, m (1?≤?n,?m?≤?3·105) — the number of segments on the axis of coordinates and the number of queries.
Next n lines contain the descriptions of the segments. The i-th line contains two positive integers li, ri (1?≤?li?≤?ri?≤?106) — the borders of the i-th segment.
Next m lines contain the description of the queries, one per line. Each line starts from integer cnti (1?≤?cnti?≤?3·105) — the number of points in the i-th query. Then the line contains cnti distinct positive integers p1,?p2,?...,?pcnti (1?≤?p1?p2?...?pcnti?≤?106) — the coordinates of points in the i-th query.
It is guaranteed that the total number of points in all queries doesn't exceed 3·105.
OutputPrint m non-negative integers, where the i-th number is the response to the i-th query.
Sample test(s) input3 3 1 3 4 5 6 7 3 1 4 7 2 4 5 1 8output
3 1 0
#include#include #include #include using namespace std; const int maxn=3000010; int ans[maxn]; struct Interval { int l,r,id; }I[maxn],q[maxn]; bool cmp(Interval a,Interval b) { return a.r 0) { sum+=tree[x]; x-=lowbit(x); } return sum; } int main() { int n,m; scanf("%d%d",&n,&m); for(int i=0;i
這次我們以circular-progress-button開源項目為案例進行分析,這個開源項目裡涉及到Drawable的使用,所以是一個不錯分析案例。一、項目概述這個項目
最近在玩3g體育門戶客戶端的時候,看到這樣個效果: 輕觸賽事圖標,會有一個圖標變大浮出的效果.,蠻有意思的.於是就把仿照它做了一個. 這個是原圖:
前言在移動互聯網浪潮中,聯網APP已經把單機拍死在沙灘上,很多公司都希望自家應用能夠有一套帳號系統,可是許多用戶卻並不一定買賬:我憑啥注冊你家應用的帳號?微博
先看看效果圖:這裡介紹的是PullToRefreshGridView的使用方法,和之前的PullToRefreshListView方法如出一轍,因為這個開源項目模塊化很棒
一、需要下載安裝的東西1. 文件下載網上也有挺多安裝教程的,這裡我提供我